
PDP-11 
PAPER TAPE SOFTWARE 

PROGRAMMING HANDBOOK 





,0 

( 

(, 

( 

(-

PDP-11 
PAPER TAPE SOFTWARE 

PROGRAMMING HANDBOOK 

The software described in this manual is 
furnished to the purchaser under a license 
for use on a single computer system and can 
be copied (with inclusion of DEC's copyright 
notice) only for use in such system, except 
as may otherwise be provided in writing by 
DEC. 

For additional copies. order No. DEC-ll-XPTSA-A-D from Digital Equipment 

Corporation, Software Distribution Center, Bldg. 1-2, Maynard, Mass. 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



First Edition, April i970 
Revised, March 1971 
Revised, January 1972 

Revised, February,1973 

Your attention is invited to the last two pages of this 
document. The "How To Obtain Software Information" page 
tells you how to keep up-to-date with DEC's software. 
The "Reader's Comments" page, when filled in and mailed, 
is beneficial to both you and DEC; all comments received 
are considered when documenting subsequent manuals. 

Copyright © 1970, 1971, 1972,1973 by Digital Equipment 
. Corpora tioD 

Technical Changes from the previous version (DEC-II-GGPC-D) 

( 

are indicated with a bar in the margin of the appropriate C.· 
page. 

Supporting and referenced documents: 

PDP-II BASIC Programming Manual 
(order: DEC-II-XBPMA-A-D) 

Copies are available from DEC's Software Distribution Center, 
Building 1-2, Maynard, Massachusetts 01754 

Teletype is a registered trademark of the Teletype 
Corporation 

The following are registered trademarks 
of Digital Equipment Corporation. . 

DEC 
FLIP CHIP 
COMPUTER LAB 
OMNIBUS 

ii 

PDP 
FOCAL 
DIGI~AL (logo) 
UNIBUS 

1/75-15 

( 

( 



r-•.. 

~ 

( 

( 

( 

PRE F ACE 

This Handbook contains descriptions of the Paper Tape Software for 

the PDP-II system. With this information you can load, dump, edit, assem­

ble, and debug PAL-llA Assembly Language programs. Math routines and 

input/output functions are also available to facilitate your programming 

efforts. 

The table of contents in the front of the Handbook directs you to the 

chapter of the system program desired. There you will find a detailed 

table of contents for reference while working with that chapter. For 

locating items instill more detail, an Index concludes the Handbook. 

The following symbols, when used herein, have the indicated 

) denotes pressing the RETURN key, or indicates an ASCII 
carriage return; 

'" 
denotes pressing the LINE FEED key, or indicates an 

ASCII line feed; 

!J. denotes pressing the SPACE bar, or indicates an ASCII 
space; 

~ denotes typing CTRL/TAB, or indicates an ASCII tab. 

Other documentation conventions are: 

meanings: 

1. Unless otherwise indicated, a line of user input is terminated 

with the RETURN key. 

2. When the distinction is useful, system printout is underlined 

and user input is not underlined. 

3. CTRL/U denotes holding down the CTRL key while typing the U key, 

as when using the SHIFT/key combination. The slash is shown merely to 

tie the actions together. CTRL is also used with certain other keys, 

e.g., CTRL/P. The use of the CTRL/key combinations usually prints a t 

and the key typed, e.g., CTRL/U echoes tu on the printer when using ED-II 

or lOX. 

iii 





( 

( 

( 

( 

CONTENTS 

CHAPTER 

I programming the PDP-II System 

2 The System Configuration 

3 Writing PAL-IIA Assembly Language 
Programs 

4 Editing the Source Program 

5 Debugging Object Programs On..-Line 

6 Loading and Dumping Core Memory 

7 Input/Output Programming 

8 Floating-Point and Math Package Overview 

9 Programming Techniques 

APPENDIX 

A ASCII Character Set 

B PAL-IIA Assembly Language and 
Assembler 

C Text Editor, ED-II 

D Debugging Object Programs On-Line, ODT-II 
and ODT-IIX 

E Loading and Dumping Core Memory 

F Input/Output programming, lOX 

G Summary of Floating-Point and Math 
Package·, FPMP-ll 

H Tape Duplication 

I Assembling the PAL-IIA Assembler 

J Standard PDP-II Abbreviations 

K Conversion Tables 



TABLE 

3-1 

FIGURE 

1-1 

1-2 

1-3 

1-4 

1-5 

2-1 

2-2 

2-3 

2-4 

2-5 

5-1 

6-1 

6-2 

6-3 

6-4 

6-5 

E-3 

E-4 

Instruction Operand Fields 

PDP-II System Block Diagram 

Processor Status Register 

PDP-II System Unibus Block Diagram 

Illustration of Push and Pop 
Operations 

Nested Device Servicing 

The PDP-II Console 

ASR-33 Teletype Console 

ASR-33 Teletype Keyboard 

High-Speed Paper Tape Reader Punch 

Line Printer Control Panel 

ODT Communication and Data Flow 

Bootstrap Loader Instructions 

Loading and Verifying the Bootstrap 
Loader 

Loading Bootstrap Tapes into Core 

The Bootstrap Loader Program 

Bootstrap Tape Format 
, 
Loading with the Absolute Loader 

Dumping Using DUMPAB or DUMPTT 

vi 

3-18 

1-2 

1-4 

1-5 

1-10 

1-16 

2-1 

2-6 

2-7 

2-9 

2-10 

5-21 

6-2 

6-4 

6-5 

6-6 

6-7 

E-5 

E-6 

( 

( 

( 

( 



1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 
1. 7.1 
1. 7.2 
1. 7.3 
1. 7.4 
1. 7.5 
1. 7.6 

1.8 

1.9 
1. 9.1 
1. 9.2 
1. 9.3 

1.10 

CHAPTER 1 

PROGRAMMING THE PDP-II SYSTEM 

INTRODUCTION 

SYSTEM FACILITIES 

STATUS REGISTER FORMAT 

UNIBUS 

DEVICE INTERRUPTS 

INSTRUCTION SET 

ADDRESSING 
Registers 
Address Pointers 
Stack Operations 
Random Access of Tables 
Summary of Address Modes 
Accessing Unstructured Data 

INSTRUCTION CAPABILITY 

PROCESSOR USE OF STACKS 
Subroutines 
Interrupts 
Traps 

PAPER TAPE SYSTEM SOFTWARE 

1-i 

1-1 

1-1 

1-4 

1-5 

1-5 

1-6 

1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-11 

1-13 

1-14 
1-14 
1-14 
1-15 

1-16 





F 
\, 

CHAPTER 1 

PROGRAMMING THE PDP-II SYSTEM 

1.1 INTRODUCTION 

The PDP-II is a 16-bit, general-purpose, parallel-logic computer using 

two's complement arithmetic. Programmers can directly address 32,768 

16-bit words, or 65,536 8-bit bytes. All communication between system 

( components is done on a single high-speed bus called the Unibus. 

Standard features of the system include eight general-purpose registers 

which can be used as accumulators, index registers, or address pointers; 

and a multi-level automatic priority interrupt system. A simplified 

block diagram of the PDP-II System is presented in Figure 1-1. 

( 
This chapter gives the PDP-II programmer an overview of system architec-

ture, points out unique hardware features, and presents programming 

concepts basic to the use of the PDP~ll. Following this is a short sum-

mary of DEC-supplied PDP-II software. 

(~ 1.2 SYSTEM FACILITIES 

Tpe architecture of the PDP-II system and the design of its central pro-

cessor provide: 

• single and double operand addressing 

• full word and byte addressing 

• simplified list and stack processing through auto-address 
stepping (autoincrementing and autodecrementing) 

• eight programmable general-purpose registers 

1-1 



(1) I- I 
::l 

'10 

Z 
I-' I ::l14 
I 

.;1 tv 

(\ 
'" 

'~-

LINE 
PRINTER 

.CUSTOMER 
EQUIPMENT 

PAPER 
TAPE 

OTHER 
DEVICES 

CORE 
MEMORY 

TTY 

7 

UNIBUS 
CONTROL 

a 
PRIORITY 

ARBITRATION 
• 

STATUS REGISTER 

5 

ARITHMETIC 
UNIT 

o 

EIGHT 
GENERAL 
PURPOSE 
REGISTERS 

CENTRAL PROCESSOR 

Figure 1-1. PDP-II SYSTEM BLOCK DIAGRAM 

,',,-....\ ~. J~ '[ 
/ 

(j 



( 

( 

• data manipulation directly within external device 
registers 

• addressing of device registers using normal memory 
reference instructions 

• asynchronous operation of memory, processor and 
I/O devices 

• a hardware interrupt priority structure for peri­
pheral devices 

• automatic interrupt identification without device 
polling 

• cycle stealing direct memory access for high-speed 
data transfer devices 

• direct addressing of 32Kwords (65K bytes). 

Two design features of the central processor serve to increase 

system throughput: 

a. The eight programmable general-purpose registers within 

the central processor can be used to store data and 

intermediate results during the execution of a sequence 

of instructions. Register-to-register addressing. 

( provides reduced execution time for most instructions. 

( 

b. The ability to code two addresses within a single 

instruction allows operations on data within memory. 

This eliminates the need to load processor registers 

prior to data operations, and greatly reduces fetch 

and store operations. 

1-3 



1.3 STATUS REGISTER FORMAT 

The Central Processor Status Register (PS) contains in­

formation on the current priority of the processor, the result 

of previous operations, and an indicator for detecting the 

execution of an instruction to be trapped during program de­

bugging. The priority of the central processor can be set 

under program control to anyone of eight levels. This in­

formation is held in bits 5, 6, and 7 of the PS. Four bits 

are assigned to monitor different results of previous instruc­

tions. These bits are set as follows: 

z if the result was zero 

N if the result was negative 

C if the operation resulted in a carry from 

the most significant bit 

v -- if the operation resulted in an arithmetic 

overflow 

The T bit is used in program debugging and can be set or 

cleared under program control. If this bit is set when an 

instruction is fetched from memory, a processor trap will 

occur at the completion of the instruction's execution. 

I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Figure 1-2. Processor Status Register 

1-4 

1 

( 

( 

( 

o 

( 



r 1.4 UNIBUS 

The Unibus is a key component of the PDP-II's unique architecture. 

The central Processor, memory, and all peripheral devices share 

" the same bus. This means that device registers can be addressed 

as memory, and data transfers from input to output devices can 

by-pass the processor. No special I/O instructions exist. All 

PDP-II instructions are available for I/O operations. 

( < UNIBUS 

CENTRAL READ / WRITE READ PAPER CUSTOMER ONLY TELETYPE DISK PROCESSOR MEMORY MEMORY TAPE EQUIPMENT . . . 

Figure 1-3 PDP-II system Unibus Block Diagram 

( 

1.5 DEVICE INTERRUPTS 

Interrupt request lines provide for device interrupts at 

processor priority levels 4 through 7. Attachment of a device 

to a specific line determines the device's hardware priority. 

Since multiple devices can be attached to a specific line, the 

priority for each is determined by position; devices closer to the 

Central Processor have higher priority. 

Direct memory devices, such as disk units, transfer data at the 

Non-Processor Request level (NPR) which has a higher priority 

than the interrupt request lines. Data transfers between such 

devices and core memory are overlapped with Processor operations. 

1-5 



Peripheral device interrupts are linked to specific core memory 

locations, or "interrupt vectors", in such a way that device 

polling is eliminated. When an interrupt occurs, the interrupt 

vector supplies a new Processor Status word (i.e., new contents for 

the Processor Status register) and a new value for the Program 

Counter. The new PC value causes execution to start at the proper 

handler at the priority level indicated by the new Status register. 

1.6 INSTRUCTION SET 

The instruction set (explained fully in the PDP-II Processor Handbook; 

summarized in Appendix B of this manual) provides operations that 

act upon B-bit bytes andl6-bit words. Coupled with varying 

(-/ 

( 

address modes -- Relative, Index, Immediate, Register, Autoincrement, ( 

or Autodecrement,each of which can be deferred -- more than 41111 

unique instructions are available. Instruction length is variable 

from one to three l6-bit words, depending upon the addressing 

mode(s) used. 

1.7 ADDRESSING 

Every byte has its own unique address. It is the instruction which 

determines whether 8-bit bytes or l6-bit words are being referenced. 

Words are addressed by their low-order (even-numbered) byte. 

Although byte addressing can be to odd- or even-numbered 

addresses, referencing words at odd-numbered addresses is illegal. 

Bits are numbered from ° at the lowest order bit (2°), to 15 (for 

a word) or 7 (for a byte) at the highest order bit (215 or 27). 

1-6 

( 

( 



( 

( 

( 

( 

Most data in programs is structured in some way; often by means of 

tables consisting 6f the data itself or of addresses which point to 

thed~a. The PDP-II handles common data structures with operand address­

ing modes specifically designed for each kind of access. In addition, 

( addressing for unstructured data permits direct random access to all 

of core. The actual formats of the modes are described in Chapter 3, 

on the PAL-II Assembler. 

1.7.1 Registers 

Addressing in the PDP-II is done through the general registers. These 

registers can be specified by preceding a number in the range ° to 7 

with a %. However, it is common practice to assign to symbols the 

register identities; often RO=%O, Rl=%l, etc. Throughout this manual, 

reference to RO, Rl, etc., as well as SP and PC, assumes such prior 

direct assignment. (See Chapter 3, Section 3.3.4.) All eight general 

registers are accessible to the programmer, but two of these have addi­

tional specialized functions (discussed below). R6 is the processor 

Stack Pointer (SP), and R7 is the Program Counter (PC). 

To make use of a register as an accumulator, index register, or sequential 

address pointer, data needs to be transferable to and from the register. 

This is accomplished with Register Mode, which specifies that the in­

struction is to operate on the contents of the indicated register itself. 

For example: 

CLR R3 ;CLEAR REGISTER 3 OF ITS CONTENTS 

1-7 



1.7.2 Address Pointers 

The instruction can be made to interpret the register contents 

as the address of the data to be operated upon, by specifying that 

Register Mode be deferred. For example, if register 3 contains 1000 

CLR (R3) or CLR @R3 

will clear the address 1000. Moreover, if it is desired to perform 

the instruction successively upon data at sequential addresses (i.e., 

in a table), Autoincrement Mode can be selected. This will auto-

matically increment the contents of the register, after its use as a 

pointer to the next sequential byte or word address. Note that Auto-

increment Mode (as well as Autodecrement Mode, mentioned below) is 

automatically deferred one level to cause the register contents to 

function as a pOinter. 

When it is specified that Autoincrement Mode be deferred, it is de­

ferred two levels so that the instruction interprets the autoincremented 

sequential locations as a table of addresses rather than as a table of 

data, as in nondeferred Autoincrement Mode. The instruction then 

operates upon the data at the addresses specified by the table entries. 

Each execution of the following ADD instructions increments the value 

of the register contents by two, to the next word address (always an 

even number). 

ACCUM: ADD (R~)+, (Rl)+ ;IF R~ INITIALLY CONTAINS l~~~, 
;AND Rl INITIALLY CONTAINS 145~, 
;THE VALUES AT LOCATIONS l~~~, 

JMP ACCUM 

; l~~ 2 , ETC., ARE ADDED TO THOSE AT 
;LOCATIONS 145~, 1452, ETC., AND 
;THE RESULT STORED AT 145~, ETC. 

1-8 

(--

( 

( 

( 

( 



( 

( 

( 

( 

ACCUM: ADD @ (R3) +, R2 

JMP ACCUM 

iIF R3'INITIALLY CONTAINS l~~~, 
iAND LOCATION l~~~ CONTAINS 342~, 
iTHE VALUE AT LOCATION 342~ IS 
iADDED TO THE CONTENTS OF R2 AND 
iTHE RESULT IS STORED THERE. AT 
iNEXT EXECUTION OF THE INSTRUC­
iTION, R3=1~~2. 

Byte instructions (such as TSTB (R2)+) using Autoincrement 

Mode, increment the register contents by one. 

In addition to this capability of incrementing a register's 

contents after their use as a pointer, an address mode comple­

mentary to this exists. Autodecrement Mode decrements the contents 

of the specified register before the contents are used as a 

pointer. This mode, too, can be deferred an additional level if 

the table contains addresses rather than data. 

1. 7.3 Stack Operations 

Both Autoincrement and Autodecrement Modes are used in stack 

operations. Stacks, also called push-down or LIFO (Last-In­

First-Out) lists, are important for temporarily saving values 

which might otherwise be altered. Their ·characteristic is that 

the most recent piece of data saved is the fi'rst to be restored. 

The PDP-II processor makes use of stack structure to save and 

restore the state of the machine on interrupts, traps, and sub-

routines (see below). To save, data is "pushed" onto a stack 

by autodecrementing the contents of a register (e.g., MOV R3,-(R6))i 

to restore, data is "popped" from a stack by autoincrementing 

(e.g., MOV (R6)+,R3). The register being used as the Stack 

Pointer always points to the top word of the stack. 

1-9 



ME~~:~ { ___ _ 
1. AN EMPTY. 

STACK 

E2 

/ 

2. PUSHING A 
DATUM ONTO 
THE STACK 

E2 

3. PUSHING ANOTHER 
DATUM ONTO THE 
STACK 

E3 E3 

I ~ EO BE EO ~ EO 8t3 EO 

4. ANOTHER 5. POP 6.PUSH 7. POP 
PUSH 

Figure 1-4. Illustration of Push and Pop Operations 

1.7.4 Random Access of Tables 

Direct access to an entry in the middle of a stack, or indeed 

any kind of table, is accomplished through Index Mode. The 

contents of a register are added to a base (fetched from the 

word or second word following the instruction) to calculate an 

address. with this facility, a fixed-order element of several 

tables, or several elements of a single table may be accessed. 

addresses e.g. ,if R3 
TABLE OF WORDS of entries contains Operand code is: 

TBL1: I 4- TBLl [I 
f- TBL1+2 2 
'- TBL1+4 4 TBLl (R3) 
Eo- TBL1+6 6 in each case 
4- TBLl + 1[1 1[1 

· 
· 
· 

When d'ef'-er'red Index Mode is specified (e.g., @TBL1(R3», the 

calculated address contains a pointer to the data, rather than 

the data itself. Byte tables are discussed in Section 1.8. 

1-10 

t. 

( 

( 

( 

.<>. 

( 



r 

( 

( 

( 

( 

1.7.5 Summary of Address Modes 

The address modes may now be summarized as follows: 

Assembler 
Syntax 

Rn 
(Rn) + 

-(Sn) 

A(Rn) 

Assembler 
Syntax 

@iRn or (Rn) 
@(Rn)+ 

@- (Rn) 

Non-deferred Modes 

Mode 

Register 
Autoincrement 

Autodecrement 

Index 

Deferred Modes 

Mode 

Deferred R~gister 
Deferred Auto­

increment 

Deferred Auto­
decrement 

Deferred Index 

1.7.6 Accessing Unstructured Data. 

Typical Use 

Accumulator 
Sequential pointer to data 

in a table; popping data 
off a stack 

Sequential pointer to data in 
a table; pushing data on a stack. 

Random access to stack or 
table entry. 

Typical Use 

Pointer to an address 
Sequential pointer to addresses 

in a table; popping address 
pointers off a stack. 

Sequential pointer to addresses 
in a table; pushing address 
pointers on a stack 

Random access to table of 
address pointers. 

Addressing of unstructured data becomes greatly facilitated through 

1-11 



the use of the Program Counter (R7) as the specified register in 

these modes. This is particularly true of Autoincrement and Index 

Modes,which are mentioned below, but discussed more fully in Chapter 3, 

the PAL-II Assembler. 

Autoincrement Mode using R7 is the way immediate data is assembled. 

This mode causes the operand itself to be fetched from the word (or 

second word) following the instruction. It is designated by preceding 

a numeric or symbolic value with #, and is known as Immediate Mode. 

The instruction 

ADD #5,0,R3 

causes the value 5.0 8 to be added to the contents of register 3. 

If the # is preceded by @, the immediate data is interpreted as an 

absolute address, i.e., an address that remains constant no matter 

where in memory the assembled instruction is executed. 

Index Mode using R,7 is the normal way memory addresses are assembled. 

This is relative addressing because the number of byte locations between 

( 

( 

the Program Counter (which contains the address of the current word+2) C 
and the data referenced (destination minus PC) is placed in the word (or 

second word) following the instruction. It is this value that is indexed 

by R7 (the Program Counter). ((Destination-PC)+PC=Destination.) Relative 

Mode is designated by specifying a memory location either numerically or 

symbolically (e.g., TST 1.0.0 or TST A). If a memory address specifica-

tion is preceded by @, it is in deferred Relative Mode and the contents 

of the location are interpreted by the instruction as a pOinter to the 

address of the data. ( 

1-12 



r 

k 

( 

( 

( 

( 

1.8 INSTRUCTION CAPABILITY 

The twelve ways of specifying an operand demonstrate the 

flexibility of the PDP-II in accessing data according to how it 

is structured, and even if it is not structured. Each instruc-

tion adds to this versatility by acting on an operand in a way 

particularly suited to its task. For example, the task of 

adding, moving, or comparing implies the use of two operands in 

any of the twelve addressing forms; whereas the task of clearing, 

testing, or negating implies only one operand. Examples: 

ADD #12,GROUP(R2) 
MOV MEMl, MEM2 
CMP (R4)+,VALUE 

CLR R3 
TST SUM 
NEG @- (R5) 

Some instructions have counterparts which operate on byte data 

rather than on full words. These byte instructions are easily 

recognized by the suffixing of the letter B to the word instruc­

tion. MOV is one such word instruction; e.g., MOVB #12,GROUP(R2) 

would move an 8-bit value of 128 to the 8-bit byte at the address 

specified. One implication of byte instructions is that in 

Autoincrement or Autodecrement Mode, a table of bytes is being 

scanned. The Autoincrement or Autodecrement therefore goes by 

one in byte instructions, rather than by two. However, because 

of their specialized processor functions, R6 and R7 in these 

modes always increment or decrement by two. 

1-13 



Forms other than single- or double-operand instructions include 

Operate instructions such as HALT and RESET, which take no 

operands; Branch instructions, which transfer program control 

under specified conditions (see Section 3.7); Subroutine calls 

and returns; and Trap instructions (see Appendix B for complete 

instruction set). 

1.9 PROCESSOR USE OF STACKS 

Because of the nature of last-in-first-out data structures, the 

same stack can be used to nest multiple levels of interrupts, 

traps, and subroutines. 

1.9.1 Subroutines 

In Subroutine calls (JSR Reg,Dest) the contents of the specified 

register are saved on the stack (the processor always uses R6 

as its Stack Pointer) and the value of the PC (return address 

following subroutine execution) becomes the new value of the 

register. This allows any arguments following the call to be 

referenced via the register. The command RTS Reg causes the 

return from the subroutine by moving the register value into the 

PC. It then pops the saved register contents back into the 

register. (Return from a subroutine is made through the same 

register that was used in its call.) 

1.9.2 Interrupts 

When the processor acknowledges a device interrupt request, the 

1-14 

(I 

( 

( 

( 



r 

( 

( 

( 

( 

device sends an interrupt vector address to the processor. The 

processor then pushes the current Status (PS) and PC onto the 

stack and picks up a new PS and PC (the interrupt vector) from 

the address speclfied by the device. Another acknowledged interrupt 

before dismissal will cause the PS and PC of the running device 

service routine to be pushed onto the stack and the address and 

status of the new service routine to be loaded into the PC and PS. 

A process can be resumed by popping the old PC and PS from the Stack 

into the current PC and PS with the Return from Interrupt (RTI) 

instruction. 

1.9.3 Traps 

Traps are processor generated interrupts. Error conditions, 

certain instructions, and the completion of an instruction fetched 

while the T bit was set cause traps. As in interrupts, the 

current PC and Status are saved on the stack and a new PC and 

Status are loaded from the appropriate trap vector. The instruc­

tion RTIprovides for a return from an interrupt or trap by 

popping the top two words of the stack back into the PC and PS. 

1-15 



1. PROCESS 0 IS 
RUNNING STACK 
POINTER (SP) 
POINTING TO 
LOCATION PO. 

O~ 400 

SP-PO 
PROGRAM 

2.INTERRUPT STOPS 0,.....--..., 
PROCESS 0 WITH 400~---I 
PC=PCO AND 
STATUS = PSO 
STARTS PROCESS 1. 

SP- PCO 

PSO 
PO~---I 

PROGRAM· 

3.PROCESS , USES 0 
STACK FOR 400 
TEMPORARY 
STORAGE !TEO. TE,). 

SP'" TEl 

TEO 

PCO 

PSO 
PO 

PROGRAM 

7. PROCESS' COMPLETES 
ITS OPERATION WITH A 
RTI. 
PC IS RESET TO PCO 

4. PROCESS' 
INTERRUPTED 
WITH PC=PC, 
AND STATUS= PS,. 
PROCESS IS 
STARTED. 

o 
400 

PO 

~PROCESS 2 0 
COMPLETES WITH 400 
A RTI INSTRUCTION 
(DISMISSES 
INTERRUPTI. 
PC IS RESET SP-
TO PC, AND 
STATUS IS RESET 
TO PS,. 
PROCESS 1 RESUMES. 

PO 

PCl 

PSl 

TEl 

TEO 

PCO 

PSO 

PROGRAM 

TEl 

TEO 

PCO 

PSO 

PROGRAM 

6.PROCESS 1 0---... 
RELEASES THE 400 I---~ 
TEMPORARY 
STORAGE HOLDING 
TEO AND TEl. 

SP- PCO 

PSO 

PO PROGRAM 

400 

AND STATUS IS 

O~ 
SP-PO 

RESET TO PSO· PROGRAM 
PROCESS 0 RESUMES. 

Figure 1-5. Nested Device Servicing 

1.10 PAPER TAPE SYSTEM SOFTWARE 

The paper tape system and utility programs described herein require 

at least 4K of COre memory (except for the 8K version of the 

PAL-llA Assembler) and an ASR-33 Teletype. 

1-16 

rl 

( 

( 

( 

( 



An optional high-'-speed paper-tape reader and punch is available, 

as is a line printer. The operation of these input/output devices 

~ is explained in Chapter 2. 

\-

( 

( 

( 

( 

Following are abstracts of the paper-tape software programs des­

cribed in this handbook. 

1. Bootstrap Loader -- used to load into core memory, 

2. 

programs punched on paper tape in bootstrap format. 

It is primarily used to load the Absolute Loader and 

Dump programs (see Chapter 6). 

Absolute Loader -- used to load into core memory, 

programs punched on paper tape in absolute binary 

format. This not only includes the binary tapes of 

subsequently listed programs but also any user program 

assembled using the PAL-IIA Assembler or dumped by 

the DUMPABprogram (see Chapter 6). 

3. PAL-IIA -- the absolute assembler for PDP-II Paper 

Tape Software system (see Chapter 3). 

4. ED-II -- the text editor for the PDP-II Paper Tape 

Software system. It is primarily intended for use 

in producing source program tapes, but may be used 

for any text generating and editing purposes (see 

Chapter 4). 

5. ODT-ll and ODT-IIX -- these are on-line debugging 

programs, enabling you to check out any object program. 

You can run all or any portion of an object program, 

and make corrections or modifications to it by typing 

commands to ODT while at the Teletype (see Chapter 5). 

1-17 



6. lOX -- which stands for Input/Output Executive, provides asyn­

chronous I/O service for Teletype I/O devices and the high-

speed paper tape reader and punch. (IOXLPT allows also for a 

line printer.) It enables you to write simple I/O requests 

specifying devices and data forms to accomplish interrupt-

controlled data transfer concurrently with the execution of a 

running user program. It is an integral part of PAL-IIA and 

ED-II (see Chapter 7). 

7. FPMP-ll--which stands for Floating-Point and Math Package, 

PDP-II, is a comprehensive set of subroutines which enable 

you to perform arithmetic operations. The subroutines may 

be used by any PDP-II object program (see Chapter 8 for overview). 

8. DUMPTT and DUMPAB -- are core dump programs which provide 

dumping of specified areas of core either in octal on the 

Teletype or in absolute binary on paper tape (see Chapter 6). 

1-18 

( 

( 



PDP-ll CONSOLE 2.1 
2.1.1 
2.1.1.1 
2.1.1.2 
2.1.1.3 
2.1. 2 

2.2 
2.2.1 
2.2.2 
2.2.3 
2.2.4 
2.2.5 

Elements of the Console 
Register Displays 
Switch Register 
Indicator Lights 

Operating the Control Switches 

OPERATING THE TELETYPE 
Power Controls 
Printer 
Keyboard 
Paper Tape Reader 
Paper Tape Punch 

CHAPTER 2 

THE SYSTEM CONFIGURATION 

2-1 
2-1 
2-2 
2-2 
2-3 
2-4 

2-6 
2-6 
2-6 
2-7 
2-7 
2-8 

2.3 OPERATING THE HIGH-SPEED PAPER TAPE READER 
AND PUNCH 

2-8 

2.3.1 Reader Unit 
2.3.2 Punch Unit 

2.4 THE LPll LINE PRINTER 

2.5 INITIALIZING THE SYSTEM 

2-i 

2-9 
2-9 

2-10 

2-12 





( 

(0 .. 

( 

CHAPTER 2 

THE SYSTEM CONFIGURATION 

This chapter explains the operation of the computer console, Teletype, 

high-speed reader/punch, and line printer. 

2.1 PDP-II CONSOLE 

The PDP-II console is designed to achieve convenient control of the system. 

Through switches and keys on the console, programs and information can be 

manually inserted or modified. Indicator lamps display the status of the 

computer at all times. The PDP-II console is shown in Figure 2-1, and each 

switch, key, and display lamp is explained below. 

I I Idlilsliltlalll ~ 
<$iJ;D.-""""CO<pC>Id:lon·.......,.,admassac:"'*'" 

AOOR£SS REGISTER RUN BU' FETCH EXEC 
i i i i i i i i i i c:::c:::l 

DATA SOlIRCE DESTINATION ADORESS 
i i i i 

I 
i i i I i i c::::::J 

EJ 
'" ~W[R PANEl.. 

IT H RE I R LOAD EXAM co., '= ~ START 

lOCI( " 16 " ,. " " " ,. • B 7 • • 4 • 2 , • .... 
"~, 

lr-- I I I I I I I I I I I I I I I ~ 

Figure 2-1. The PDP-II Console 

2.1.1 Elements of the Console 

The console has the following indicators and switches: 

1. A bank of eight indicators, indicating the following con­
ditions or operations: 

a. Fetch 
b. Execute 
c. Bus 
d. Run 
e. Source 
f. Destination 
g. Address (two bits) 

2-1 



2. An lS-bit ADDRESS REGISTtR display 

3. A l6-bit DATA Register display 

4. An lS-bit Switch Register 

5. Control Switches: 

a. LOAD ADDR 

b. EXAM 
c. CONT· 
d. ENABLE/ 

HALT 
e. S-INST/ 

S-CYCLE 
f. START 
g. DEI' 

:2. L 1.1 Register Displays 

(Load value set in switch Register into 
address register) 

(Examine contents of location) 
(Continue execution) 

(Enable or halt execution) 
(Single Instruction-Single 

Cycle execution) 
(Start execut1on) 
(D~posit valu~ set in f}wit9lJ: ~egister 

1nto specif1ed memory locat1on) 

The operator's console has an IS-bit ADDRESS REGISTER display and a l6-bit 

DATA Register display. The ADDRESS REGISTER display is tied directly to 

the output of an lS-bit flip .... flop register called the Bus Address Register. 

This register displays the address of data examined or deposited. 

2.1.1.2 Switch Register 

The PDP-II is capable of referencing l6-bit addresses. However, the Unibus 

has expansion capability for IS-bit addresses. Therefore, to access the 

entire IS-bit address scheme; the Switch Register is IS-bits wide. These 

bits are assigned as 0 through 17. The highest two bits are used only for 
addressing. 

A switch in the ~ position is considered to have a 1 value. A switch 

in the down position is considered to have a 0 value. The condition of the 

switches can be loaded into the ADDRESS REGISTER or any memory location 

using the appropriate control switch described below. 

1. LOAD ADDR 

2. EXAM 

Transfers the contents of the IS-bit 
Switch Register into the ADDRESS REGIS­
TER. 

Displays the contents of the location 
specified by the ADDRESS REGISTER. 

2-2 

r) 

( _/ 

( 



( 

3. DEP 

4 • ENABLE/HALT 

5. START 

6. CON'r 

7. S-INST/S-CYCLE 

Deposits the contents of the low-order 
l6-bits of the Switch Register into 
the address displayed in the ADDRESS 
REGISTER~ (This switch is actuated by 
raising it.) 

Allows or prevents running of programs. 
For a program to run, the switch must 
be in the ENABLE position (~p). Placing 
the switch in the HALT position (down) 
will halt the system at the end of the 
current instruction or cycle, depending 
on the position of the S-INST/S-CYCLE 
switch. 

Begins execution of a program when the 
ENABLE/HALT switch is in the ENABLE 
position. When the START switch is de­
pressed it asserts a system initializa­
tion signal, actually starting the sys­
tem when the switch is released. The 
processor will start executing at the' 
actdress which was last loaded by the 
LOAD ADDR 'switch. 

Allows the computer to continue with­
out initialization from whatever state 
it was in when halted. 

Determines whether a single instruction 
or a single cycle is performed when the 
CONT switch is depressed while the COm­
puter is in the halt moge. 

When the system is running a program, the LOAD ADDR, EXAM, and Dl!lPosit 

( functions are disabled to prevent disrupting the running program. 

r 

-<0 

C. 

2.1.1. 3 Indicator Li2hts 

The indicator lights signify specific comp~ter functions, operations, or 

states. Each is .explained 

1- fETCH 

2. EXECUTE 

3. BUS 

below. 

Indicates that the central processor is 
in the state of fetching an instruction. 

Indicates that the central procesSOr is 
in the state of exec~ting an instruction. 

Indicates that a peripheral is controlling­
the bus. It is lit when Bus Busy (BBSY) 
is asserted, unless the processor (incl~g­
ing the console) is asserting BBSY. 

2-3 



4. RUN 

5. SOURCE 

6. DESTINATION 

7. ADDRESS 

.Indicates that the processor is running. 
(While executing a RESET command [20 ms.] 
the RUN light is not on.) 

Indicates that the central processor is 
obtaining source data. (Not lit when 
data is from an internal register.) 

Indicates that the central processor is 
obtaining destination data. (Not lit 
when data is from an internal register.) 

Identifies the source or destination ad­
dress cycle of the central processor. 
When references to the addresses are made 
via the Unibus, the lights tell the com­
puter's source or destination cycle. For 
an internal register reference, the address 
is always zero. 

2.1.2 Operating the Control Switches 

When the PDP-II has been halted at the end of an instruction, it is possible 

to examine and update the contents of locations. (You cannot EXAMine or 

DEPosit at the end of a single cycle unless the cycle coincides with the 

(-

( 

end of the instruction.) To examine a specific location, set the Switch ( 

Register to correspond to the location's address, and press LOAD ADDR, 

which will transfer the contents of the Switch Register into the ADDRESS 

REGISTER. The location of the address to be examined is then displayed 

in the ADDRESS REGISTER. You can then depress EXAM, and the data in that 

location will appear in the DATA register. 

If you attempt to examine data from or deposit data into a nonexistent 

memory location, an error will occur and the DATA register will reflect 

location 000004, the trap location for references to nonexistent locations. 

To verify this condition, deposit some number other than four in the loca­

tion. If four is still indicated, either nothing is assigned to that loca­

tion or whatever is assigned is not working properly. 

By depressing EXAM again, the ADDRESS REGISTER will be incremented by 

two to the next word address, and the contents of this next location may be 

examined. The ADDRESS REGISTER will always indicate the address of the 

data displayed in the DATA register. 

2-4 

( 

( 
" 



------- ~ -~-.~ -~~--~ ~~~- ~~ - -

The examine function is such that if LOAD ADDR is depressed and then 

~ EXAM, the ADDRESS REGIST~R will not be incremented. In this case, the 

location reflected in the ADDRESS REGISTER is examined directly. However, 

on successive depressings of EXAM only, the ADDRESS REGISTER is incremented. 

( 

If you find an incorrect entry in the DATA register, you can enter the 

correct data there by putting it in the Switch Register and raising the 

DEP switch. The ADDRESS REGISTER will not increment when this data is 

deposited. Therefore, by pressing the EXAM switch you can examine (verify) 

the data just deposited. However, pressing EXAM again will increment the 

register to the next word address. 

When doing consecutive examines or deposits, the address will incre­

mentby two, to successive word locations. However, when examining the 

general-purpose registers (RO-R7), the system only increments by one. 

The reason for this is that once the Switch Register is set properly, you 

can use the automatic stepping feature of EXAM to examine general-purpose 

registers from the computer console. 

( To start a program after it is loaded into core, load the starting 

( 

( 

address of the program into the Switch Register, press LOAD ADDR, and 
after ensuring that the ENABLE/HALT switch is in the ENABLE position, de­

press START. The program should start to run as soon as the START switch 

is released. 

Normally, when the system is running, not only will the RUN light be 

on but other lights (FETCH, EXECUTE, SOURCE, etc.) will be flickering. If 

the RUN light is on and none of the other lights are flickering, the system 

could be executing a WAIT instruction which waits for an interrupt. 

r While in the halt mode, if you wish to do a single instruction, place 

the S-INST/S-CYCLE switch in the S-INST position and depress CaNT. When 

CaNT is pressed, the console momentarily passes control to the processor, 

allowing it to execute one instruction before regaining control. Each time 

the CaNT switch is pressed the computer will execute one instruction. If 

you wish to have the computer perform a single cycle; place the S-INST/S­
CYCLE switch in the S-CYCLE position and press CaNT. The computer will 

then perform one complete cycle and halt. 

2-5 



To start the program again, place the ENABLE/HALT switch in the ENABLE 

position and press CONT. Ci 

2.2 OPERATING THE TELETYPE 

The ASR-33 Teletype (TTY) is the basic input/output device for PDP-II com­

puters. It consists of a prInter, keyboard, paper tape reader, and paper 

tape punch, all of which can be used either on-line under program control or 

off-line. The Teletype controls (Figure 2-2) are described as they apply 

to the operation of the computer. 

OFF 

REL. 

B. SP. 

ON 

START -
STOP -
FREE -

OFF 

LINE 0 LOCAL 

(TTY switch) 
Figure 2-2. ASR-33 Teletype Console 

2.2.1 Power Controls 

LINE 

OFF 

LOCAL 

2.2 .. 2 Printer 

The Teletype is ene~gized and connected to 
the computer as an input/output device, under 
computer control. 

The Teletype is de-energized. 

The Teletype is energized for off-line opera­
tion. 

The printer provides a typed copy of input and output at 10 characters per 

second, maximum. 

2-6 

( 

c 

( 



2.2.3 Keyboard 

(~ ... - The Teletype keyboard is similar to a typewriter keyboard. However, cer­

tain operational functions are shown on the upper part of some of the key­

tops. These functions are activated by holding down the CTRL key while 

depressing the desired key. For example, when using the Text Editor, 

CTRL/U causes the current line of text to be ignored. 

( 

( 

( 

( 

Although the left and right square brackets are not visible on the 

keyboard key tops, they are shown in Figure 2-3 and are generated by typing 

SHIFT/K and SHIFT/M, respectively. The ALT MODE key is identified as ESC 

(ESCape) on some keyboards. 

(DCDC)(DG)C)OG)G)G)C)C)® 
@G)Qcv(f)Ci?OQCV~®@@ 
8Qe?GJCVeBQOCDctJc)®88 
8QG)G)QG)(DCDc)c)CD8 

SPACE 

Figure 2-3. ASR-33 Teletype Keyboard 

2.2.4 Paper Tape Reader 

The paper tape reader (LSR) is used to read data punched on eight chan­

nel perforated paper tape at a rate of 10 characters per second, maxi­

mum. The reader controls are shown in Figure 2-2 and described below. 

START 

STOP 

FREE 

Activates the reader; reader sprocket wheel 
is engaged and operative. 

Deactivates the reader; reader sprocket wheel 
is engaged but not operative. 

Deactivates the reader; reader sprocket wheel 
is disengaged. 

The following procedure describes how to properly position paper tape 

in the low-speed reader. 

a. Raise the tape retainer cover. 

2-7 



b. Set reader control to FREE. 

c. Position the leader portion of the tape over the read 
pens with the sprocket (feed) holes over the sprocket 
(feed) wheel and with the arrow on the tape (printed 
or cut) pointing outward. 

d. Close the tape retainer cover. 

e. Make sure that the tape moves freely. 

f. Set reader control to START, and the tape will be read. 

2.2.5 Paper Tape Punch 

IThe paper tape punch (LSP) is used to perforate eight-channel rolled 

oiled paper tape at a maximum rate of 10 characters per second. The 

punch controls are shown in Figure 2-2 and described below. 

Blank 

RELease 

B.SP 

Disengages the tape to allow tape removal or 
loading. 

Backspaces the tape one space for each firm 
depression of the B.SP button. 

ON (LOCK ON) Activates the punch. 

OFF (UNLOCK) Deactivates the punch. 

leader/trailer tape is generated by: 

1. Turning the TTY switch to LOCAL 

2. Turning the LSP on 

3. Typing the HERE IS key 

4. Turning the LSP off 

5. Turning the TTY switch to LINE. 

2.3 OPERATING THE HIGH-SPEED PAPER TAPE READER AND PUNCH UNITS 

A high-speed paper tape reader and punch unit is pictured in Figure 2-4 

and descriptions of the reader and punch units follow. 

2-8 

( 

( 

( 

( 



2.3.1 Reader Unit 

r The high-speed paper tape reader is used to read data from eight-channel 

fan-folded (non-oiled) perforated paper tape photoelectrically at a maxi­

mum rate of 300 characters per second. Primary power is applied to the 

reader when the computer POWER switch is turned on. The reader is under 

program control. However, tape can be advanced past the photoelectric 

( sensors without causing input by pressing the reader FEED button. 

2.3.2 Punch Unit 

The high-speed paper tape punch is used to record computer output on eight­

channel fan-folded paper tape at a maximum rate of 50 characters per second. 

( All characters are punched under program control from the computer. Blank 

tape (feed holes only, no data) may be produced by pressing the FEED button. 

c 

( 

r 

( 

Primary power is available to the punch when the computer POWER switch is 

turned on. 

PAPER TAPE OFF LINE 

Figure 2-4. High-Speed Paper Tape Reader/Punch 

Paper tape is loaded into the reader as explained below. 

1. Raise tape retainer cover. 

FEED 

ON LINE 

FEED 

2. Put tape into right-hand bin with channel one of 
the tape toward the rear of the bin. 

3. Place several folds of blank tape through the 
reader and into the left-hand bin. 

2-9 



4. Place the tape over the reader head with feed 
holes engaged in the teeth of the sprocket wheel. 

5. Close the tape retainer cover. 

6. bepress the tape feed button until leader tape is 
over the reader head. 

CAUTION 

Oiled paper tape should not be used 
in the high-speed reader or punch -
oil collects dust and dirt which can 
cause reader or punch errors. 

2.4 THE LPll LINE PRINTER 

The LPll is a line printer with 80 column capacity, capable of printing ( 

more than 300 lines per minute at a full 80 columns, and more than 1100 

lines per minute at 20 columns. The print rate is dependent upon the data 

and the number of columns to be printed. 

Characters are loaded into the printer memory via the Line Printer 

Buffer (LPB) serially. When the memory becomes full (20 characters) the 

characters are automatically printed. This continues until the 80 columns ( 

have been printed or a carriage return, line feed, or form feed character 

is recognized. 

Figure 2-5 illustrates the printer control panel on which are mounted 

three indicator lights and three toggle switches. 

• El E1 
ON LINE 

0 8 • TOP PAPER OFF LINE 
OF STEP 

FORM 

Figure 2-5. Line Printer Control Panel 
2-10 

( 

( 



(~. 

( 

( 

( 
\ 

( 

Operatian af the lights and switches is as fallaws: 

POWER light 

READY light 

ON LINE light 

ON/OFF (main pawer) switch 

TOP OF FORM switch 

PAPER STEP switch 

ON LINE/OFF LINE switch 

Glaws red to' indicate main pawer switch 
(lacated inside cabinet) is at ON pasi­
tian and pawer is available to' the printer. 

Glaws white, shartly after the POWER light 
gaes an to' indicate that internal campan­
ents have reached synchranaus state and 
the printer is ready to' aperate. 

Glaws white to' indicate that ON LINE/OFF 
LINE taggle switch is in ON LINE pasitian. 

This switch cantrals line current to' the 
printer. TO' gain access to' it, the printer 
frant panel is unlatched, by pushing the 
circular buttan an the right hand edge, 
and ape ned to' the left an its hinges. The 
switch is lacated to' the left af center 
appraximately faurteen inches belaw the 
tap. If pawer is available, the red POWER 
light an the cantral panel will glaw when 
the switch is pasitianed at ON. 

The switch is an when in the up pasitian. 
The ON and OFF labels are printed an the 
stem af the switch. A graup af twa switches 
and three indicatar lights, abave the main 
power switch, are far the use af techni­
cians in making initial adjustments to' the 
printer. 

This switch is tipped taward the frant af 
the cabinet to' raIl up the farm to' the tap 
af the succeeding page. It is spring re­
turned to' center pasitian, and praduces a 
single tap-af-farm aperatian each time it 
is actuated. The switch is effective anly 
when the printer is aff line. 

Operates similarly to' TOP OF FORM but pra­
duces a single line step each time it is 
actuated. It is anly effective with 
printer aff line. 

This twa-pasitian taggle switch is spring­
returned to' center. When mamentarily pasi­
tianed at ON LINE it lagically cannects the 
printer to' the camputer and causes the ON 
LINE light to' glaw. Pasitianed mamentarily 
at OFF LINE, the lagical cannectian to' the 
camputer is braken, the ON LINE light gaes 
aff, and the TOP OF FORM and PAPER STEP 
switches are enabled. 

2-11 



2.5 INITIALIZING THE SYSTEM 

Before using the computer system, it is good practice to initialize all units ~) 
as specified below. 

a. Main power cord is properly plugged in 

b. Computer POWER key is ON 

c. Console switches are set: 

ENABLE/HALT to HALT 

SR=OOOOOO 

d. Teletype is turned to LINE 

e. Low-speed punch is OFF ( 
f. Low-speed reader is set to FREE 

g. High-speed reader/punch is ON 

The system is now initialized and ready for your use. 

( 

( 

.~. 

( 



3.1 

3.2 
3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.2.5 

3.3 
3.3.1 
3.3.2 
3.3.3 
3.3.4 

3.4 
3.4.1 
3.4.2 
3.4.3 

3.5 

3.6 
3.6.1 
3.6.2 
3.6.3 
3.6.4 
3.6.5 
3.6.6 
3.6. 7 
3.6.8 
3.6.9 
3.6.10 
3.6.11 

3.7 

3.8 
3.8.1 
3.8.2 
3.8.3 
3.8.4 
3.8.5 
3.8.6 

3.9 
3.9.1 
3.9.2 
3.9.3 
3.9.4 
3.9.5 

3.10 

3.11 

CHAPTER 3 

WRITING PAL-llA 

ASSEMBLY LANGUAGE PROGRAMS 

CHARACTER SET 

STATEMENTS 
Label 
Operator 
Operand 
Comments 
Format Control 

SYMBOLS 
Permanent Symbols 
User-defined Symbols 
Direct Assignment 
Register Symbols 

EXPRESSIONS 
Numbers 
Arithmetic and Logical Operators 
ASCII Conversion 

ASSEMBLY LOCATION COUNTER 

ADDRESSING 
Register Mode 
Deferred Register Mode 
Autoincrement Mode 
Deferred Autoincrement Mode 
Autodecrement Mode 
Deferred Autodecrement Mode 
Index Mode 
Deferred Index Mode 
Immediate and Deferred Immediate Modes 
Relative and Deferred Relative Modes 
Table of Mode Formats and Codes 

INSTRUCTION OPERAND FORMS 

ASSEMBLER DIRECTIVES 
.EOT 
. EVEN 
.END 
.WORD 
.BYTE 
.ASCII 

OPERATING PROCEDURES 
Introduction 
Loading PAL-llA 
Initial Dialogue 
Assembly Dialogue 
Assembly Listing 

ERROR CODES 

SOFTWARE ERROR HALTS 

3-i 

3-2 

3-2 
3-3 
3-3 
3-4 
3-5 
3-5 

3-5 
3-6 
3-6 
3-6 
3-7 

3-8 
3-9 
3-9 
3-10 

3-10 

3-11 
3-12 
3-13 
3-13 
3-14 
3-14 
3-14 
3-15 
3-15 
3-15 
3-16 
3-17 

3-18 
3-19 
3-19 
3-20 
3-20 
3-20 
3-21 
3-22 

3-22 
3-22 
3-23 
3-23 
3-29 
3-31 
3-32 

3-33 





( 

(~I 

CHAPTER 3 

WRITING PAL-ILA ASSEMBLY LANGUAGE PROGRAMS 

PAL-llA (Program Assembly Language for the PDP-II's Absolute Assembler) is 

the "heart" of the PDP-ll/20 Paper Tape Software system. It enables you 

to write source (symbolic) programs using letters, numbers, and symbols 

which are meaningful to you. The source programs, generated either on­

line using the Text Editor (ED-II), or off-line, are then assembled into 

object programs (in absolute binary) which are executable by the computer. 

The object program is produced after two passes through the Assembler; an 

optional third pass produces a complete octal/symbolic listing of the as­

sembled program. This listing is especially useful for documentation and 

debugging purposes. 

This chapter explains not only how to write PAL-llA programs but 

also how to assemble the source programs into computer-acceptable ob­

ject programs. All facets of the assembly language are explained and 

illustrated with many examples, and the chapter concludes with assem­

bling procedures. In explaining how to write PAL-llA source programs 

(~~,':' it is necessary, especially at the outset, to make frequent forward 

references. Therefore, we recommend that you first read through the 

entire chapter to get a "feel" for the language, and then reread the 

chapter, this time referring to appropriate sections as indicated, for 

a thorough understanding of the language and assembling procedures. 

Some notable features of PAL-llA are: 

1. Selective assembly pass functions 

2. Device specification for pass functions 

3. Optional error listing on Teletype 

4. Double buffered and concurrent I/O (provided py lOX) 

5. Alphabetized, formatted symbol table listing 

The PAL-llA Assembler is available in two versions: a 4K version and 

an 8K version. 

The assembly language applies equally to both versions. The 4K ver­

sion provides symbol storage for about 176 user-defined symbols, and the 

8K version provides for about 1256 user-defined symbols (see Section 3.3). 

3-1 



In addition, the 8K version allows a line printer to be used for the pro­

gram listing and/or symbol table listing. 

The following discussion of the PAL-llA Assembly Language assumes 

that you have read the PDP-II Processor Handbook, with emphasis on those 

sections which deal with the PDP-II instruction set, formats, and tim­

ings -- a thorough knowledge of these is vital to efficient assembly 

language programming. 

3.1 CHARACTER SET 

A PAL-llA source program is composed of symbols, numbers, expressions, 

symbolic instructions, assembler directives, argument separators, and line 

terminators written using the following ASCII l characters. 

1. The letters A through Z. (Upper and lowercase letters 
are acceptable, although upon input, lower case letters 
will be converted to upper case letters.) 

2. The numbers 0 through 9. 

3. The characters . and $ (reserved for system software) • 

4. The separating or terminating symbols: 

: = % # @ ( ) II , + - & ! , 
carriage return tab space line feed form feed 

3.2 STATEMENTS 

( 

A source program is composed of a sequence of statements, where each state­

ment is on a single line. The statement is terminated by a carriage return ( 

character and must be immediately followed by either a line feed or form 

feed character. Should a carriage return character be present and not be 

followed by a line feed or form feed, the Assembler will generate a Q 

error (Section 3.10) and that portion of the line following the carriage 

return will be ignored. Since the carriage return is a required statement 

terminator, a line feed or form feed not immediately preceded by a carriage 

return will have one inserted by the Assemb1er. 

It should be noted that, if the .Editor (ED-II) is being used to create 

the source program (see Section 4.4.4), a typed carriage return (RETURN 

lASCII stands for American Standard Code for Information Interchange. 

3-2 

,.. ! 



key) automatically generates a line feed character. 

A statement may be composed of up to four fields which are identified 

by their order of appearance and by specified terminating characters as ex­

plained below and summarized in Appendix B. The four fields are: 

Label Operator Operand Comment 

The label and comment fields are optional. The operator and operand 

fields are interdependent -- either may be omitted ,depending upon the con­

tents of the other. 

3.2.1 Label 

( A label is a user-defined symbol (see Section 3.3.2) which is assigned the 

value of the current location counter. It is a symbolic means of referring 

to a specific location within a program. If present, a label always occurs 

first in a statement and must be terminated by a colon. For example, if 

the current location is 100S' the statement 

( 

( 

ABCD: MOV A,B 

will assign the value 100 8 to the label ABCD so that subsequent reference 

to ABCD will be to location lOOse More than one label may appear within 

a single label field; each label within the field will have the same value. 

For example, if the current location is 100, multiple labels in the state"'" 

ment 

ABC: $DD: A7.7: MOV A,B 

will equate each of the three labels ABC, $DD, and A7.7 with the value 

lOOse ($ and. are reserved for system software.) 

The error code M (multiple definition of a symbol) will be generated 

during assembly if two or more labels have the same first six characters. 

3.2.2 Operator 

An operator follows the label field in a statement, and may be an instruc­

tion mnemonic or an assembler directive (see Appendix B). When it is an 

instruction mnemonic, it specifies what action is to be performed on any 

3-3 



operand(s) which follows it. When it is an assembler directive, it speci­

fies a certain function or action to be performed during assembly. 

The operator may be preceded only by one or more labels and may be 

followed by one or more operands and/or a comment. An operator is legally 

terminated by a space, tab, or any of the following characters. 

# + @ " % & 

line feed form feed carriage return 

The use of each character above will be explained in this chapter. 

Consider the following examples: 

MOV A,B 

MOV@A,B 

;~ (TAB) terminates operator MOV 

;@terminates operator MOV 

( 

When the operator stands alone without an operand or comment, it is 

terminated by a carriage return followed by a line feed or form feed charac-' ( 

ter. 

3.2.3 Operand 

An operand is that part of a statement which is operated on by the opera­

tor -- an instruction mnemonic or assembler directive. Operands may be 

symbols, expressions, or numbers. When multiple operands appear within a ( 

statement, each is separated from the next by a comma. An operand may be 

preceded by an operator and/or label, and followed by a comment. 

The operand field is terminated by a semicolon when followed by a 

comment, or by a carriage return followed by a line feed or form feed 

character when the operand ends the statement. For example, 

LABEL: MOV GEORGE, BOB ;THIS IS A COMMENT 

where the space between MOV and GEORGE terminated the operator field and 

began the operand field; the comma separated the operands GEORGE and BOB; 

the semicolon terminated the operand field and began the comment. 

3-4 

( 



3.2.4 Comments 

C-- The comment field is optional and may contain any ASCII character except 

null, rubout, carriage return, line feed or form feed. All other charac­

ters, even those with special significance are ignored by the Assembler 

when used in the comment field. 

{ 

( 

( 

( 

-<. 

The comment field may be preceded by none, any, or all of the other 

three fields. It must begin with the semicolon and end with a carriage 

return followed by a line feed or form feed character. For example, 

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT 

Comments do not affect assembly processing or program execution, but 

they are useful in program listings for later analysis, checkout or docu­

mentation purposes. 

3.2.5 Format Control 

The. format is controlled by the space and tab characters. They have no 

effect on the assembling process of the source program unless they are em­

bedded within a symbol, number, or ASCII text; or are used as the operator 

field terminator. Thus, they can be used to provide a neat, readable pro­

gram. A statement can be written 

LABEL:MOV(SP)+,TAG;POP VALUE OFF STACK 

or, using formatting characters it can be written 

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK 

which is much easier to read. 

Page size is controlled by the form feed character. A page of n lines 

is created by inserting a form feed (CTRL/FORM keys on the keyboard) after 

the nth line. If no form feed is present, a page is terminated after 56 

lines, 

3.3 Symbols 

There are two types of symbols, permanent and user-defined. Both are 

3-5 



stored in the Assembler's. symbol table. Initially, the symbol table con­

tains the permanent symbols, but as the source program is assembled, user-

defined symbols are added to the table. () 

3.3.1 Permanent Symbols 

Permanent symbols consist of the instruction mnemonics {see Appendix B.3} 

and assembler directives (see Section 3.8). These symbols are a permanent 

part of the Assembler's symbol table and need not be.defined before being 

used in the source program. 

3 •. 3.2 User-Defined Symbols 

User-defined symbols are those defined as labels {see Section 3.2.l} or by 

direct assignment {see Section 3.3.3}. These symbols are added to the sym­

bol table as they are encountered during the first pass of the assembly. 

They can be composed of alphanumeric characters, dollar signs, and periods C 
only; again" dollar signs and periods are reserved for use by the system 

software. Any other character is illegal and, if used, will result in the 

error message I (see Section 3.ll). The following rules also apply to 

user-defined symbols: 

1. The first character must not be a number. 

2. Each symbol ~ be unique within the first six characters. 

3. A symbo.l may be written with more than six lega 1 characters 
but the seventh and subsequent characters are only checked 
for legality, and are not otherwise recognized by the Assembler. 

4. Spaces and tabs must not be embedded within a symbol. 

( 

A user-defined symbol may duplicate a permanent symbol. The value as­

sociated with a permanent symbol that is also user-defined depends upon its ( 

use: 

1 .. A permanent symbol encountered in the operator field is as­
sociated with its corresponding machine op-code. 

2.. If a permanent symbol in the operand field is also user­
defined, its user-defined value is associated with the symbol. 
If the symbol is not found to be user-defined, then the cor­
responding machine op-code value is associated with the symbol. 

3.3.3 Direct Assisnment 

A direct assignment s'tatement associates a symbol with a value. When a 

direct assignment statement defines a symbol for the first time, that sym-

bol is entered into the Assembler's symbol table and the specified value is (_ 

associated with it. A symbol may be redefined by assigning a new value to 

a previously defined symboL The newly assigned value will replace the 

3-6 



( 

( 

( 

previous value assigned to the symbol. 

The general format for a direct assignment statement is 

symbol = expression 

The following conventions apply: 

1. An equal 'sign (=) must separate the symbol from 
the expression defining the symbol. 

2. A direct assignment statemen't may be preceded by 
a label and may be followed by a comment. 

3. Only one symbol can be defined by anyone direct 
assignment statement. 

4. Only one level of forward referencing is allowed. 

Example of the two levels of forward referencing (illegal): 

x = Y 
Y = Z 
Z = 1 

X and Yare both undefined throughout pass 1 and will be listed on the 

printer as such at the end of that pass. X is undefined throughout pass 

2, and will cause a U error message. 

Examples: 

C: 
E: 

A = 1 ;THE SYMBOL A IS EQUATED WITH THE VALUE 1 

B = 'A-l&MASKLOW ;THE SYMBOL B IS EQUATED WITH THE EXPRES­
iSION'S VALUE. 

D = 3 
MOV #l,ABLE 

iTHE SYMBOL D IS EQUATED WITH 3. 
iLABELS C AND E ARE EQUATED WITH 
iNUMERICAL MEMORY ADDRESS OF THE 
;COMMAND. 

THE 
THE 
MOV 

3.3.4 Register Symbols 

The eight general registers of the PDP-II are numbered 0 through 7. These 

registers may be referenced by use of a register symbol, that is, a sym­

bolic name for a register. A register symbol is defined by means of a 

3-7 



direct assignment, where the defining expression contains at least one 

term preceded by a % or at least one term previously defined as a register 

symbol. 

R~=%~ 
R3=R~+3 
R4=1+%3 
THERE=%2 

iDEFINE R~ AS REGISTER ~ 
iDEFINE R3 AS REGISTER 3 
iDEFINE R4 AS REGISTER 4 
iDEFINE "THERE" AS REGISTER 2 

It is important to note that all register symbols must be defined before 

they are referenced. A forward reference to a register symbol will gener­

aliy cause phase errors (see Section 3.10) • 

(-' 

The % may be used in any expression thereby indicating a reference to 

a register. Such an expression is a register expression. Thus, the state- ( 

ment 

CLR %6 

will clear register 6 while the statement 

( 
CLR 6 

~ill clear the word at memory address 6. In certain cases a register can 

be referenced without the use of a register symbol or register expression. 

These cases are recognized through the context of the statement and are 

thoroughly explained in Sections 3.6 and 3.7. Two obvious examples of this C,'. 
are: " 

JSR 5,SUBR 

CLR X (2') 

3.4 EXPRESSIONS 

iTHE FIRST OPERAND FIELD MUST 
iALWAYS BE A REGISTER. 

iANY EXPRESSION ENCLOSED IN 
i( ) MUST BE A REGISTER. IN 
;THIS CASE, INDEX REGISTER 2. 

Ari thmetic and logical operators (see Section 3.4.2) may be uS,ed to form 

expressions. A term of an expression may be a permanent or user-defined 

symbol, a number, ASCII data, or the present value of the assembly loca- ( 

tion counter represen~ed by the period. Expressions are evaluated from 

left to right. Parenthetical grouping is not allowed. 

3-8 



Expressions are evaluated as word quantities. The 6perands of a 

r-- .BYTE directive (Section 3.8.5) are evaluated as word expressions before 

truncation to the low-order eight bits. 

( 

c 

( 

A missing term or expression will be interpreted as O. A missing 

operator will be interpreted as +. The error code Q (~uestionable syntax) 

, will be generated for a missing operator. For example, 

A + iOPERAND MISSING 

will be evaluated as A + 0 - 100, and 

TAG LA 177777 iOPERATOR MISSING 

will be evaluated as TAG LA+177777. 

3.4.1 Numbers 

~he Assembler accepts both octal and decimal numbers. Octal numbers con­

sist of the digits 0 through 7 only. Decimal numbers consist of the digits 

o through 9 followed by a decimal point. If a number contains an 8 or 9 

and is not followed by a decimal point, the N error code (see Section 3.10) 

will be printed and the number interpreted as decimal. Negative numbers 

may be expressed as a number preceded by a minus sign rather than in a two's 

complement form. Positive numbers may be preceded by a plus sign although 

this is not required. 

If a number is too large to fit into 16 bits, the number-is truncated 

from the left. In the assembly listing the statement will be flagged with 

a Truncation (T) error. 

3.4.2 Arithmetic and Logical Operators 

The arithmetic operators are: 

+ indicates addition or a positive number 

indicates subtraction or a negative number 

The logical operators are defined and illustrated below. 

& indicates the logical AND operation 

indicates the logical inclusive OR operation 

3-9 



AND OR 

f,J & f,J = f,J f,J ! f,J = f,J 

f,J & 1 = f,J ~ ! 1 = 1 

1 & f,J = f,J 1 ! f,J = 1 

1 & 1 = 1 1 ! 1 = 1 

3.4.3 ASCII Conversion 

When preceded by an apostrophe, any ASCII character (except null, rubout, 

carriage return, line feed, or form feed) is assigned the 7-bit ASCII value 

of the character (see Appendix A). For example, 

'A 

is assigned the value lOIS' 

When preceded by a quotation mark, two ASCII characters (not includ­

ing null, rubout, carriage return, line feed, or form feed) are assigned 

the 7-bi t ASCII values of· each of the characters to be used. Each 7-bi t 

value is stored in an S-bit byte and the bytes are combined to form a 

word. For example, 'iAB will store the ASCII value of A in the low-order 

(even) byte and the value of B in the high-order (odd) byte: 

high-order byte low-order byte 

I 

B's value = 1 0 2 I 1 0 
~,r-~r---"_~l~~ 
o 100 001 001 000 
~ '---v---" '-y--J ~ 

= A's value 

04110 

3.5 ASSEMBLY LOCATION COUNTER 

The period (.) is the symbol for the assembly location counter. (Note dif­
ference of Program Counter. . ~ PC. See Section 3.6.) When used in the 

operand field of an instruction, it represents the adqress of the first 

word of the instruction. When used in the operand field of an assembler 

directive, it represents the address of the current byte or word. For ex­

ample, 

3-10 

r' 

( 

( 

( 

'-: 



, , 

( 

--'------ - ----------------

A: MOV #.,RfJ ,. REFERS TO LOCATION A, I.E., 
;THE ADDRESS OF THE MOV INSTRUCTION 

(# is explained in Section 3.6.9). 

At the beginning of each assembly pass, the Assembler clears the loca­

tion counter. Normally, consecutive memory locations are assigned to each 

byte of object data generqted. However, the location where the object data 

is stored may be changed by a direct assignment altering the location count-

er. 

.=expression 

The expression defining the period must not contain forward references 

or symbols that vary from one pass to another. Examples: 

.=5fJfJ 

FIRST: MQV . +10 ,COUNT 

.=52fJ 

SECOND: MOV ., INDEX 

;THE LABEL FIRST HAS THE VALUE 500 S 
;.+10 EQUALS 5l0S . THE CONTENTS 
;OF THE LOCATION 5l0 S WILL BE DE­
;POSITED IN LOCATION COUNT. 

;THE ASSEMBLY LOCATION COUNTER NOW 
;HAS A VALUE OF 520 S. 

;THE LABEL SECOND HAS THE VALUE 520 8 • 
;THE CONTENTS OF LOCATION 520 S' 
;THAT IS, THE BINARY CODE FOR THE 
;INSTRUCTION ITSELF, WILL BE DEPOSITED 
;IN LOCATION INDEX. 

( 
\ Storage area may be reserved by advancing the location counter. For 

example, if the current value of the location counter is 1000, the direct 

assignment statement 

.=.+lfJfJ 

will reserve 100 8 bytes of storage space in the program. The next instruc­

tion will be stored at 1100. 

3.6 ADDRESSING 

The Program Counter (register 7 of the eight general registers) always con­

tains the address of the next word to be fetched; Le., the address of the 

next instruction to be executed, or the second or third word of the current 

instruction. 
3-11 



In order to understand how the address modes operate and how they as­

semble (see Section 3.6.11), the action of the Program Counter must be 

understood. The key rule is: 

Whenever the processor implicitly uses the Program Counter (PC) 

to fetch a word from memory, the program Counter is automatically 

incremented by two after the fetch. 

That is, when an instruction is fetched, the PC is incremented by two, 

so that it is pointing to the next word in memorYi and, if an instruction 

uses indexing (see Sections 3.6.7, 3.6.8, and 3.6.10), the processor uses 

the Program Counter to fetch the base from memory. Hence, using the rule 

above, the PC increments by two, and now points to the next word. 

The following conventions are used in this section: 

a. Let E be any expression as defined in Section 3.4. 

b. Let R be a register expression. This is any expres­
sion containing a term preceded by a % character or 
a symbol previously equated to such a term. 

Examples: 

RO = %0 
Rl = RO + 1 
R2 = 1 + %1 

iGENERAL REGISTER 0 
iGENERAL REGISTER 1 
iGENERAL REGISTER 2 

c. Let ER be a register expression or an expression in 
the range 0 to 7 inclusive. 

d. Let A be a general address specification which pro­
duces a 6-bit address field as described in the 
PDP-II Handbook. 

The addressing specification, A, may now be explained in terms of E, 

R, and ER as defined above. Each will be illustrated with the single oper­

and instruction CLR or double operand instruction MOV. 

3.6.1 Register Mode 

The register contains the operand. 

Format: R 

3-12 

( 

( 



( 

Example: 

RO = %0 

CLR RO 

3.6.2 Deferred Register Mode 

jDEFINE RO AS REGISTER 0 

jCLEAR REGISTER 0 

The register contains the address of the operand. 

Format: 

Example: 

@R or (ER) 

CLR @Rl 
or 

CLR (1) 

jCLEAR THE WORD AT THE 
iADDRESS CONTAINED IN 
jREGISTER 1. 

3.6.3 Autoincrement Mode 

The contents of the register are incremented immediately after being used 
1 

as the address of the operand. 

Format: 

Examples: 

1 

(ER) + 

CLR 
CLR 
CLR 

(RO)+ 
(RO+3) + 
(2)+ 

jCLEAR WORDS AT ADDRESSES 
iCONTAINED IN REGISTERS 0, 3, lND 2 AND 
jINCREMENT REGISTER CONTENTS 
jBY TWO. 

a. Both JMP and JSR instructions using mode 2 (non-deferred Autoincre­
ment Mode) autoincrement the register before its use. 

b. In double operand instructions of the addressing form %R,(R)+ or 
%R,-(R) where the source and destination registers are the same, the 
source operand is evaluated as the autoincremented or autodecremented 
valuei but the destination register, at the time it is used, still con­
tains the originally intended effective address. 

For example, if Register 0 contains 100, the following occurs: 

MOV R~, (~) + 
MOV R~,-(~) 

iTHE QUANTITY 102 IS MOVED TO LOCATION 100 
iTHE QUANTITY 76 IS MOVED TO LOCATION 76 

The use of these forms should be avoided, as they are not guaranteed 
to remain in future PDP-ll's. 

3-13 



3.6.4 Deferred Autoincrement Mode 

The register contains the pointer to the address of the operand. The con- ~ 

tents of the register are incremented after being used. 

Format: @(ER)+ 

Example: 

CLR @(3)+ 

3.6.5 Autodecrement Mode 

iCONTENTS OF REGISTER 3 POINT 
iTO ADDRESS OF WORD TO BE CLEARED 
iBEFORE BEING INCREMENTED BY TWO 

The contents of the register are decremented before being used as the ad-

dress of the operand. l C 

Format: 

Examples: 

-(ER) 

CLR -(RO) 
CLR -(RO+3) 
CLR -(2) 

;DECREMENT CONTENTS OF REG­
iISTERS 0, 3, AND 2 BEFORE USING 
iAS ADDRESSES OF WORDS TO BE CLEARED 

3.6.6 Deferred Autodecrement Mode 

The contents of the register are decremented before being used as the 

pointer to the address of the operand. 

Format: @-(ER) 

1 
See previous footnote. 

3-14 

( 

( 

( 



( 
\. 

( 

( 

( 

,5' 

Example: 

CLR @- (2) 

3.6.7 Index Mode 

Format: E (ER) 

iDECREMENT CONTENTS OF REG. 2 
iBEFORE USING AS POINTER TO ADDRESS 
iOF WORD TO BE CLEARED 

The value of an expression E is stored as the second or third word of the 

instruction. The effective address is calculated as the value of E plus 

the contents of +egister ER. The value E is called the base. 

Examples: 

CLR X+2 (Rl) 

CLR -2(3) 

3.6.& Deferred. Index Mode 

iEFFECTIVE ADDRESS IS X+2 PLUS 
;THE CONTENTS OF REGISTER 1 

iEFFECTIVE ADDRESS IS -2 PLUS 
iTHE CONTENTS OF REGISTER 3 

An expression plus the contents of a register gives the pointer to the ad­

dress of the operand. 

Format: 

Example: 

@E (ER) 

CLR @14 (4) iIF REGISTER 4 HOLDS 100, AND LOCA­
iTION 114 HOLDS 2000, LOC. 2000 IS 
iCLEARED 

3.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode 

The immediate mode allows the operand itself to be stored as the second or 

t third word of the instruction. It is assembled as an autoincrement of 

register 7, the PC. 

Format: #E 

Examples: 

MOV #100, RO 

MOV #X, RO 

iMOVE AN OCTAL 100 TO REGISTER 0 

iMOVE THE VALUE OF SYMBOL X TO 
iREGISTER 0 

3-15 



The operation of this mode is explained as follows: 

The statement MOV #100,R3 assembles as two words. These are: 

Just before this instruction is fetched and executed, the PC points 

to the first word of the instruction. The processor fetches the first 

word and increments the PC by two. The source operand mode is 27 (auto­

increment the PC). Thus, the PC is used as a pointer to fetch the oper­

and (the second word of the instruction) before being incremented by two, 

to point to the next instruction. 

If the #E is preceded by @, E specifies an absolute address. 

3.6.10 Relative and Deferred Relative Modes 

Relative Mode is the normal mode for memory references. 

Format: E 

Examples: 

CLR 100 

MOV X,Y 

iCLEAR LOCATION 100 

iMOVE CONTENTS OF LOCATION X TO 
iLOCATION Y 

This mode is assembled as IndexMode, using 7, the PC, as the register. 

The base of the address calculation, which is stored in the second or third 

word of the instruction, is not the address of the operand. Rather, it is 

the number which, when added to the PC, becomes the address of the operand. 

Thus, the base is X - PC. The operation is explained as follows. 

If the statement MOV 100,R3 is assembled at location 20, then the as­

sembled code is: 

Location 20: 

Location 22: 

The processor fetches the MOV instruction and adds two to the PC so that 

3-16 

( 

( 

( 

.",. 

( 



~---'--'-~~~--~------- -- --- - ----- - -- ---------- --- - --
___ ~_.o...'-..o-________________ _ 

it points to location 22. The source operand mode i.s 67; that is, indexed 

by the pc. To pick up the base, the processor fetches the word pointed to 

by the pc and adds two to the pc. The pc now points to location 24. To 

r-- calculate the address of the source operand, the base is added to the desig~ 

nated register. That is, Base + PC = 54 + 24 = 100, the operand address. 

,1 ' 

( 

( 

~ --

( 

Since the Assembler considers . as the address of the first word of the 

instruction, an equivalent statement would be 

MOVIOO -.- 4(PC) ,R3 

This mode is called relative because the operand address is calculated rela­

tive to the current pc. The base is the distance (in bytes) between the 
I 

operand and the current pc. If the operator and its operand are moved in 

memory so that the distance between the operator and data remains constant, 

the instruction will operate correctly. 

If E is preceded by @, the expression's value is the pointer to the 

address of the operand. 

3.6.11 Table of Mode Forms and Codes (6-bit (A) format only - see Sec­
tion 3.7) 

Each instruction takes at least one word. Operands of the first six forms 

listed below do not increase the length of an instruction. Each operand 

in one of the other forms however, increases the instruction length 

by one word. 

None of these } 
forms increase 
the instruction 
length. 

Any of these 
forms adds a 
word to the 
instruction 
length 

Form 

R 
@R or (ER) 
(ER)+ 
@ (ElU + 
- (ER) 
@- (ER) 

E(ER) 
@E (ER) 
#E 
@#E 

E 
@E 

Mode 

fin 
In 
2n 
3n 
4n 
5n 

6n 
7n 
27 
37 

67 
77 

3-17 

Meaning 

Register 
Register n deferred 
Autoincrement 
Autoincrement deferred 
Autodecrement 
Autodecrement deferred 

Index 
Index deferred 
Imm'ediate 
Absolute memory 
reference 
Relative 
Relative deferred 
reference 



Notes: 

1. An alternate form for @R is (ER). However, the form @(ER) 
is equivalent to @O(ER). 

2. The form @#E differs from the form E in that the second or 
third word of the instruction contains the absolute address 
of the operand rather than the relative distance between the 
operand and the PC. Thus, the" statement CLR @#100 will 
clear location 100 even if the instruction is moved from 
the point at which it was assembled. 

3.7 INSTRUCTION FORMS 

The instruction mne~onics are given in Appendix B. This section defines 

the number and nature of the operand fields for these instX'uctions. 

In the table that follows, let R, E, and ER represent expressions as 

defined in Section 3.4, and let A be a 6-bit address specification of the 
forms: 

E 
R 
(ER)+ 
-fER) 
E(ER) 
IE 

@E 
@R or (R) 
@(ER)+ 
@- (ER) 
@E (ER) 
@IE 

Table 3 ... 1. Instruction Operand Fields 

Instruction 

pOuble Operand 

~ingle Operand 
Operate 

Branch 

Subroutine Call 

Subroutine Return 

EMT/TRAP 

Op A,A 

Op A 

Op 
Op E 

FoX'm 

wheX'e -l28l0~ (E- • ... 2) /2.~127l0 

JSR ER,A 
RTS ER 

Op or 
Op E 

where 0~E~377R 
'" 

3-18 

Example 

MOV (R6)+,@Y 

CLR - (R2) 
HALT 

BR X+2 
BLO .-4 

JSR PC,SUBR 

RTS PC 
EMT 

EMT 31 

( 

( 

( 

( 



( 

( 

j' 

The branch instructions are one word insuructions. The high byte con­

tains the op code and the low byte contains an 8-bit signed offset (7 bits 

plus sign) which specifies the branch address relative to the pc. The 

hardware calculates the branch address as follows: 

a) Extend the sign of the offset through bits 8-15. 

b) Multiply the result by 2. This creates a word offset 
rather than a byte offset. 

c) Add the result to the PC to form the final branch ad­
dress. 

The Assembler performs the reverse operation to form the byte offset 

from the specified address. Remember that when the offset is added to the 

PC, the PC is pointing to the word following the branch instruction; hence 

the factor -2 in the calculation. 

Byte offset = (E-PC)/2 truncated to eight bits. 

Since PC = .+2, we have 

Byte offset = (E-·-2)/2 truncated to eight bits. 

The EMT and TRAP instructions do not use the low-order byte of the 

word. This allows information to be transferred to the trap handlers in 

the low-order byte. If EMT or TRAP is followed by an expression, the value 

is put into the low-order byte of the word. However, if the expression is 

too big (>377 8 ) it is truncated to eight bits and a Truncation (T) error 

occurs. 

3.8 ASSEMBLER DIRECTIVES 

Assembler directives (sometimes called pseudo-ops) direct the assembly 

process and may generate data. They may be preceded by a label and 

followed by a comment. The assembler directive occupies the operator 

field. Only one directive may be placed in anyone statement. One or 

more operands may occupy the operand field or it may be void -- allow­

able operands vary from directive to directive. 

3.8.1. . EOT 

The .EOT directive indicates the physical ~nd-Of-!ape though not the logical 

( end of the program. If the .EOT is followed by a single line feed or 

form feed, the Assembler will still read to the end of the tape, but 

3-19 



will not process anything past the .EOT directive. If .EOT is followed 

by at least two line feeds or form feeds, the Assembler will stop before 

the end of the tape. Either case is proper, but it should be understood 

that even though it appears as if the Assembler has read too far, it 

actually hasn't. 

If a .EOT is embedded in a tape, and more information to be as­

sembled follows it, .EOT must be immediately followed by at least two 

line feeds or form feeds. Otherwise, the first line following the .EOT 
will be lost. ~ 

Any operands following a .EOT dir~ctive will be ignored. The .EOT 

directive allows several physically separate tapes to be assembled as one 

program. The last tape is normally terminated by a .END directive (see 

Section 3.8.3) but may be terminated with .EOT (see .END emulation in 

Section 3.9.4). 

3.8.2 • EVEN 

The .EVEN directive ensures that the assembly location counter is even by 

adding one if it is odd. Any operands following a .EVEN directive will 

be ignored. 

3.8.3 • END 

The .END directive indicates the logical and physical end of the source 

program. The .END directive may be followed by only one operand, an ex­

pression indicating the program's entry point. 

( 

( 

At load time, the object tape will be loaded and program execution will 

begin at the entry point indicated by the .END directive. If the entry ( 

point is not specified, the Loader will halt after reading in the object 

tape. 

3.8.4 .WORD 

The .WORD assembler directive may have one or more operands, separated by 

commas. Each operand is stored in a word of the object program. If there 

is more than one operand, they are stored in successive words. The oper­

ands may be any legally formed expressions. For example, 

.=142.0' 
SAL=.0' 
.WORD l77535,.+4,SAL iSTORED IN WORDS 142.0', 1422, AND 

.~ 1424 WILL BE 177535, 1426, AND .0'. 

3-20 

\ 

( 



11.' 

( 

( 

( 
'. 

Values exceeding 16 bits will be truncated from the left, to word 

length. 

A .WORD directive followed by one or more void operands separated by 

commas will store zeros for the void operands. For example, 

.=143,0' 
• WORD ,5, 

iZERO, FIVE, AND ZERO ARE STORED 
iIN WORDS 143,0', 1432, AND 1434 . 

An operator field left blank will be interpreted as the .WORD direc­

tive if the operand field contains one or more expressions. The first 

term of the first expression in the operand field must not be an instruc­

tion or assembler directive unless preceded by a +, - or one of the logi­

cal operators ! or &.For example, 

.=44,0' 
LABEL: +MOV,LABEL 

iTHE OP-CODE FOR MOV, WHICH IS ,0'1,0',0',0',0', 
iIS STORED IN LOCATION 44,0'. 44,0' IS 
iSTORED IN LOCATION 442. 

Note that the default .WORD will occur whenever there is a leading 

arithmetic or logicql operator, or whenever a leading symbol is encountered 

which is not recognized as an instruction mnemonic or assembler directive. 

Therefore, if an instruction mnemonic or assembler directive is misspelled, 

the .WORD directive is assumed and errors will result. Assume that MOV is 

spelled incorrectly as MOR: 

MOR A,B 

Two error codes can result: a Q will occur because an expression operator 

is missing between MOR and A, and a U will occur if MOR is undefined. Two 

words will be generated; one for MOR A and one for B. 

3.8.5 . BYTE 

The .BYTE assembler directive may have one or more operands separated by 

commas. Each operand is stored in a byte of the object program. I.f multiple 

operands are specified, they are stored in successive bytes. The operands 

may be any legally formed expression with a result of 8 bits or less. For 

example, 

SAM=5 
• =41,0' 
• BYTE 48., SAM 

;STORED IN LOCATION 41,0' WILL BE 
i,0'6,0' (THE OCTAL EQUIVALENT OF 48) . 
iIN 411 WILL BE ,0',0'5 • 

3-21 



If the expression has a result of more than 8 bits, it will be trun­

cated to its low-order 8 bits and will be flagged as a T error. If an 

operand after the .BYTE directive is left void, it will be interpreted as 

zero. For example, 

.=42~ 

. BYTE 

3.8.6 .ASCII 

, , 
iZERO WILL BE STORED IN 
iBYTES 42~, 421 AND 422 . 

The .ASCII directive translates strings of ASCII characters into their 7-

bit ASCII codes with 

feed, and form feed. 

ter at the beginning 

the exception of null, rubout, carriage return, line 

The text to be translated is delimited by a charac­

and the end of the text. The delimiting character may 

be any printing ASCII character except colon and equal sign and those used 

in the text string. The 7-bit ASCII code generated for each character will 

be stored in successive bytes of the object program. For example, ( 

.=5~~ 

.ASCII /YES/ 

• ASCII /5+3/2/ 

iTHE ASCII CODE FOR "y" WILL BE 
iSTORED IN 5~~, THE CODE FOR "E" 
iIN 5~1, THE CODE FOR "S" IN 5~2 . 

jTHE DELIMITING CHARACTER OCCURS 
jAMONG THE OPERANDS. THE ASCII 
j CODES FOR "5", "+", AND "3" ARE 
jSTORED IN BYTES 5~3, 5~4, AND 
j5~5. 2/ IS NOT ASSEMBLED. 

The .ASCII directive must be terminated by a space or a tab. 

3.9 OPERATING PROCEDURES 

3.9.1 Introduction 

The Assembler enables you to assemble an ASCII tape containing PAL-1lA 

statements into an absolute binary tape. To do this, two or three 

passes are necessary. On the first pass the Assembler creates a table 

of user-defined symbols and their associated values, and a list of 

undefined symbols is printed on the teleprinter. On the second pass the 

Assembler assembles the program and punches out an absolute binary tape 

and/or outputs an assembly listing. During the third pass (this pass is 

optional) the Assembler punches an absolute binary tape ££ outputs an 

assembly listing. The symbol table (and/or a list of errors) may be out­

put on any of these passes. The input and output devices as well as 

( 

( 

various options are specified during the initial dialogue (see Section 3.9.3).( 

The Assembler initiates the dialogue immediately after being loaded and 

after the last pass of an assembly. 

3-22 



3.9.2 Loading PAL-IIA 

PAL-IIA is loaded by the Absolute Loader (see Chapter 6 for operating 

procedures). Note that the start address of the Absolute Loader must be 

( in the Switch Register when loading the Assembler. This is because the 

Assembler tape has an initial portion which clears all of core up to the 

address specified in the Switch Register, and jumps to that address to 

start loading the Assembler. 

3.9.3 Initial Dialogue 

After being loaded, the Assembler initiates dialogue by printing on the 

teleprinter: 

*S 

( meaning "What is the Source symbolic input device?" The response may 

be: 

( 

r 

( 

H meaning High-speed reader 

L meaning Low-speed reader 

T meaning Teletype keyboard 

If the response is T, the source program must be typed at the terminal 

once for each pass of the assembly and it must be identical each time it 

is typed. 

The device specification is terminated, as is all user response, by typ­

ing the RETURN key. 

If an error is made in typing at any time, typing the RUBOUT key will 

erase the immediately preceding character if it is on the current line. 

Typing CTRL/U will erase the whole line on which it occurs. 

After the *S question and response, the Assembler prints: 

*B 

3-23 



meaning "What is the Binary output device?1I The responses to *B are simi­

lar to those for *8: 

H 

L 

meaning High-speed punch 

meaning Low-speed punch 

meaning do not output binary tape 
() denotes typing the RETURN key) 

In addition to I/O device specification, various options may be chosen. 

The binary output will occur on the second pass unless /3 ~ndicating the 

third pass) is typed following the H or L. Errors will be listed on the 

same pass if /E is typed. If /E is typed in response to more than one in­

quiry, only the last occurrence will be honored. It is strongly suggested 

that the errors be listed on the same pass as the binary output, since 

errors may vary from pass to pass. If both /3 and /E are typed, /3 must 

precede /E. The response is terminated by typing the RETURN key. Examples: 

*B L/E 

*B H/3/E 

Binary output on the low-speed punch and 
the errors on the teleprinter, both during 
the second pass. 

Binary output on the high-speed punch and 
the errors on the teleprinter, both during 
the third pass. 

Typing just the RETURN key will cause the Assembler 
to omit binary output. 

After the *B question and response, the Assembler prints! 

*L 

meaning IIWhat is the assembly Listing output device?1I The response to *L 
may be: 

L meaning Low-speed punch (outputs a tab as a tab-rubout) 

( 

( 

( 

H meaning High-speed punch ~ 

T 

P 

) 

meaning Teleprinter (outputs a tab as mUltiple spaces) 

meaning line Printer (8K version only) 

meaning do not output listing 
(.J denotes typing the RETURN key) 

3-24 

( 



After the I/O device specification, pass and error list options simi­

lar to those for *B may be chosen. The assembly listing will be output on 

the third pa~s unless /2 (indicating the second pass) is typed following 

H, L, T, or P, Errors will be listed on the teleprinter during the same 

pass if /E is typed. If both /2 and /E are typed, /2 must precede /E. 

The response is terminated by typing the RETURN key. Examples: 

*L L/2/E 

*L H 

*L 

Listing on low-speed punch and errors 
on teleprinter during second pass. 

Listing on high-speed punch during 
third pass. 

The RETURN key alone will cause the 
Assembler to omit listing output. 

After the *L question and response, the final question is printed on 

( the teleprinter: 

( 

( 

*T 

meaning "What is the symbol Table output device?" The device specification 

is the same as for the *L question. The symbol table will be output at 

the end of the first pass unless /2 or /3 is typed in response to *T. The 

first tape to be assembled should be placed in the reader before typing 

the RETURN key because assembly will begin upon typing the RETURN key in 

response to the *T question. The./E option is not a meaningful response 

to *T. Example: 

*T T/3 Symbol table output on teleprinter at 
end of third pass. 

Typing just the RETURN key will cause the 
Assembler to omit symbol table output. 

The symbol table is printed alphabetically, four symbols per line. 

;' Each symbol printed is followed by its identifying characters and by its 

value. If the symbol is undefined, six asterisks replace its value. The 

identifying characters indicate the class of the symbol; that is, whether 

it is a label, direct-assignment, register symbol, etc. The following 

( examples show the various forms: 

3-25 



ABCDEF 001244 (Defined label) 

R3 = %000003 (Register symbol) 

DIRA8M = 177777 (Direct assignment) 

XYZ = ****** (Undefined direct assignment) 

R6 = %****** (Undefined register symbol) 

LABEL - ****** (Undefined label) 

Generally, undefined symbols (including labels) will be listed 

as undefined direct assignments. 

Multiply-defined symbols are not flagged in the symbol table printout 

but they are flagged wherever they are used in the program. 

It is possible to output both the binary tape anq, the assembly list­

ing on the same pass, thereby reducing the assembly process to two passes 

(see Example 1 below). 'rhis will happen automatically unless the binary 

device and the listing device are conflicting devices or the same device 

_(see Example 2 below). The only conflicting devices are the teleprinter 

and the low-speed punch. Even though the Assembler deduces that three 

passes are necessary, the binary and listing can be forced on pass 2 by 

including /2 in the responses to *B and *L (see Example 3 below). 

Example l. Runs 2 passes: 

*8 H High-speed reader 

*B H High-speed punch 

*L P Line Printer 

*T T Teleprinter 

Example 2. Runs 3 passes: 

*8 H High-speed reader 

*B H High-speed punch 

*L H High-speed punch 

*'1' T Teleprinter 

3-26 

(, 

( 

( 

( 

( 



r-

( 

( 

Example 3. Runs 2 passes: 

*S H High-speed reader 
*B H/2 High-speed punch on pass 2 
*L H/2 High-speed punch on pass 2 
*T T Teleprinter 

Note that there are several cases where the binary output can be 

intermixed with ASCII output: 

a. 

b. 

c. 

*B H/2 

*L H/2 

*B L/E 

*B L/2/E 
*L T/2 

Binary and 

listing to punch on pass 2 

Binary to low-speed punch and 

error listing to teleprinter 
(and low-speed punch) 

Binary, error listing, and 

listing to low-speed punch. 

The binary so generated is loadable by the Absolute Loader as long as there 

are no CTRL/A characters in the so~rce program. The start of every block 
on the binary tape is indicated by a 001 and the Absolute Loader ~gnores 

all information until a 001 is detected.. Thus, all source and/or error 

messages will be ignored if they do not contain any CTRL/A characters 

( (octal 001). 
'. 

If a character other than those mentioned is typed in response to 

a question, the Assembler will ignore it and print the question again. 
Example: 

*S H 

*B Q 

*B 

High-speed reader 

Q is not a valid response 
The question is repeated 

If at any time you wish to restart the Assembler, type CTRL/P. 

When no passes are omitted or error options specified, the Assembler 

performs as follows: 



PASS 1: 

PASS 2: 

PASS 3: 

Assembler creates a table of user-defined symbols and 
their associated values to be used in assembling the source 
to object program. Undefined symbols are listed on the tele­
printer at the end of the pass. The symbol table is also 
listed at this time. If an illegal location statement of the 
form .=expression is encountered, the line and error code will 
be printed out on the teleprinter before the assembly proceeds. 
An error in a location statement is usually a fatal error in 
the program and should be corrected. 

Assembler punches the object tape, and prints the pass error 
count and undefined location statements on the teleprinter. 

Assembler prints or punches the assembly program listing, un­
defined location statements, and the pass error count on the 
teleprinter. 

The functions of passes 2 and 3 will occur simultaneously on pass 2 if the 

binary and listing devices are different, and do not conflict with each 

other (low-speed punch and Teletype printer conflict) . 

The following table summarizes the initial dialogue questions: 

Printout Inquiry 

*S What is the input device of the Source symbolic tape? 

*B What is the output device of the Binary object tape? 

*L What is the output device of the assembly Listing? 

*T What is the output device of the symbol Table? 

The following table summarizes the legal responses: 

Character Response Indicated 

T Teletype keyboard or printer 

L Low-speed reader or punch 

H High-speed reader or punch 

P Line printer (8K version only) 

/1 Pass 1 

/2 Pass 2 

/3 Pass 3 

/E 
) 

Errors listed on same pass (not meaningful in response to *S or *T) 

Omit function 

3-28 

(-

( 

( 

( 

( 



(-" 

I". 

( 

( 

Typical examples of complete initial dialogues: 

For minimal PDP-II configuration: 

*S L Source input on low-speed reader 

*B L/E Binary output on low-speed punch - Errors during same (second) pass 

*L T Listing on teleprinter during pass 3 

*T T Symbol table on teleprinter at end of pass I 

For a PDP-II with high-speed I/O devices: 

*S H Source input on high-speed reader 

*B H/E Binary output on high-speed punch, 
Errors during same (second) pass. 

*L No listing 

*T T/2 Symbol table on teleprinter at end of pass 2 

3.9.4 Assembly Dialogue 

During assembly, the Assembler will pause to print on the teleprinter vari­

ous messages to indicate that you must respond in some way before the as­

sembly process can continue. You may also type CTRL/P, at any time, if you 

wish to stop the assembly process and restart the initial dialogue, as men­

tioned in the previous section. 

When a .EOT assembler directive is read on the tape, the assembler 

( prints: 
\" 

EOF ? 

and pauses. During this pause, the next tape is placed in the reader, and 

RETURN is typed to continue the assembly. 

If the specified assembly listing output device is the high-speed 

punch and if it is out of tape, or if the device is the Line Printer and 

is out of paper, the Assembler prints on the teleprinter: 

EOM ? 

3-29 



and waits for tape or paper to be placed in the device. Type the RETURN 

key when the tape or paper has been replenished; assembly will continue. 

are: 

Conditions causing the EOM ? message for an assembly listing device 

HSP 

No power 

No tape 

LPT 

No power 

Printer drum gate open 

Too hot 

No paper 

There is no EOM if the line printer is switched off-line; although charac­

ters may be lost for this condition as well as for an EOM. If the binary 

output device is the high-speed punch and if it is out of tape, the 

Assembler prints: 

EOM ? 
*S 

( 

The assembly process is aborted and the initial dialogue is begun again. C 
When a .END assembler directive is read on the tape, the Assembler 

prints: 

END ? 

and pauses. During the pause the first tape is placed in the reader, and 

the RETURN key is typed to begin the next pass. On the last pass, the 

.END directive causes the Assembler to begin the initial dialogue for the 

next assembly. 

If you are starting the binary pass and the binary is to be punched 

on the low-speed punch, turn the punch on before typing the RETURN key 

for starting the pass. The carriage return and line feed characters will 

be punched onto the binary tape, but the Absolute Loader will ignore them. 

If the last tape ends with a .EOT, the Assembler may be told to 

c 

emulatea .END assembler directive by responding with E followed by the (_ 

3-30 



(-

( 

RETURN key. The Assembler will then print: 

END? 

and wait for another RETURN before starting the next pass. Example: 

3.9.5 

EOF? E 
END? 

NOTE 

When a .END directive is emulated with an E 
response to the EOF? message, the error 
counter is incremented. 

To avoid incrementing the error counter, 
place a paper tape containing only the line 
.END in the reader and press the RETURN key 
instead of using the E response. 

Assembly Listing 

PAL-IIA produces a side-by-side assembly listing of symbolic source state-

( ments, their octal equivalents, assigned absolute addresses, and error 

( 

codes, as follows: 

EELLLLLL 000000 SSS ...... S 
000000 
000000 

The E's represent the error field. The L's represent the absolute address. 

The O's represent the object data in octal. The SiS represent the source 

statement. While the Assembler accepts 7210 characters per line on input, 

the listing is reduced by the 16 characters to the left of the source state­

ment. 

The above represents a three-word statement. The second and third 

words of the statement are listed under the command word. No addresses pre­

cede the second and third words since the address order is sequential. 

The third line is omitted for a two-word statement; both second and 

third lines are omitted for a one-word statement. 

3-31 



For a .BYTE directive, the object data field is three octal digits. 

For a direct assignment statement, the value of the defining expression 

is given in the object code field although it is not actually part of the 

code of the object program. 

Each page of the listing is headed by a page number. 

3.10 ERROR CODES 

The error codes printed beside the octal and symbolic code in the assembly 

listing have the following meanings: 

Error Code 

A 

B 

D 

I 

L 

M 

N 

P 

Q 

R 

S 

Meaning 

Addressing error. An address within the instruction 
is incorrect. 

Bounding error. Instructions or word data are being 
assembled at an odd address in memory. The location 
counter is updated by +1. 

Doubly-defined symbol referenced. Reference was made 
to a symbol which is defined more than once. 

Illegal character detected. Illegal characters which 
are also non-printing are replaced by a ? on the list­
ing. 

Line buffer overflow. Extra characters on a line (more 
'than 7210 ) are ignored. 

Multiple d~finition of a label. A label was encoun­
tered which was equivalent (in the first six charac­
ters) to a previously encountered label. 

~umber containing 8 or 9 has no decimal point. 

Phase error. A label's definition or value varies 
from one pass to another. 

Questionable syntax. There are missing arguments or 
the instruction scan was not completed or a carriage 
return was not immediately followed by a line feed or 
form feed. 

Register-type error. An invalid use of or reference 
to a register has been made. 

eymbo1 table overflow. When the quantity of user­
defined symbols exceeds the allocated space available 
in the user's symbol table, the assembler outputs the 
current source line with the S error code, then returns 
to the initial dialogue. 

3-32 

( 

( 

c 

( 
,~ 



'J 

( 

T 

U 

!runcation error. A number generated more than 16 
bits of significance or an expression generated more 
than 8 bits of significance during the use of the .BYTE 
directive. 

Undefined symbol. An undefined symbol was encountered 
during the evaluation of an expression. Relative to 
the expression, the undefined symbol is assigned a 
value of zero. 

3.11 SOFTWARE ERROR HALTS 

PAL-IIA loads all unused trap vectors with the code 

.WORD .+2,HALT 

so that if the trap does occur, the processor will halt in the second word 

of the vector. The address of the,halt, displayed in the console address 

register, therefore indicates the cause of the halt. In addition to the 

halts which may occur in the vectors, the standard lOX error halt at loca-

( tion 40 may occur (see Chapter 7). 

( 

Address of Halt 

12 

16 

26 

32 

40 

Meaning 

Reserved instruction executed 

Trace trap occurred 

Power fail trap 

EMT executed 

lOX detected error 

See Appendix B for summaries of PAL-llA features. 

3-33 





CHAPTER 4 

EDITING THE SOURCE PROGRAM 

4.1 COMMAND MODE AND TEXT MODE 

4.2 COMMAND DELIMITERS 
4.2.1 Arguments 
4.2.2 The Character Location Pointer (Dot) 
4.2.3 Mark 
4.2.4 Line-Oriented Command Properties 
4.2.5 The Page Buffer 

4.3 COMMANDS 
4.3.1 Input and Output Commands 
4.3.1.1 Open 
4.3.1.2 Read 
4.3.1.3 List and Punch 
4. 3. 1. 4 Next 
4.3.1.5 Form Feed and Trailer 
4.3.1.6 Procedure with Low-Speed Punch 
4.3.2 Commands to Move Dot and Mark 
4.3.2.1 Beginning and End 
4.3.2.2 Jump and Advance 
4.3.2.3 Mark 
4.3.3 Search Commands 
4.3.3.1 Get 
4.3.3.2 Whole 
4.3.4 Commands to Modify Text 
4.3.4.1 Insert 
4.3.4.2 Delete and Kill 
4.3.4.3 Change and Exchange 

4.4 OPERATING PROCEDURES 
4.4.1 Error Correction 
4.4.2 Starting 
4.4.3 Restarting 
4.4.4 Creating a Paper Tape 
4.4.5 Editing Example 

4.5 SOFTWARE ERROR HALTS 

4-i 

4-1 

4-2 
4-2 
4-3 
4-3 
4-3 
4-4 
4-4 
4-4 
4-5 
4-5 
4-6 
4-7 
4-7 
4-7 
4-7 
4-7 
4-7 
4-8 
4-8 
4-8 
4-9 
4-9 
4-9 
4-10 
4-11 

4-1'2 
4-12 
4-13 
4-14 
4-14 
4-14 

4-22 





( 
, 

\ 
) 

CHAPTER 4 

Editing the Source Program, ED-II 

The PDP-II Text Editor program (ED-II) enables you to display your source 

program (or an¥text) on the teleprinter, make corrections or additions 

to it, and punch all or any portion of the program on paper tape. This 

is accomplished by typing simple one-character commands on the keyboard. 

The Editor commands can be grouped according to function: 

1-

2. 

3. 

4. 

input/output; 

searching for strings of charac'ters; 

positioning the current character location pointer; 

inserting, deleting, and exchanging text portions. 

All input/output functions are handled by lOX, the PDP-II Input/Output 

Executive (see Chapter 7). 

C 4.1 COMMAND MODE AND TEXT MODE 

Whenever ED-II prints an * on the teleprinter, you may type a command 

to it. (Only one command per line is acceptable.) The Editor is then 

said to be in Command Mode. While most commands operate exclusively in 

this mode, there are five ED-II commands that require additional infor­

mation in order for the commands to be carried out. The Editor goes 

into Text Mode to receive this test. 

Should a nonexistent command be typed or a command appear in incorrect 

format, ED-II will print a? This will be followed by an * at thebeqin­

ning of a new line indicating that the Editor is in Command Mode. 

Editor processing begins in Command Mode. When you type a command, 

no action occurs until you follow it by typing the RETURN key (sometimes 

symbolized as ) • If the command is not a text-type command, typing the 

RETURN key will initiate the execution of the command and ED-II will 

remain in Command Mode. However, if the command is a text-type command 

(~~) (Insert, e!,change, £,hange, Qet, or w!!ole), typing the RETURN key will 

cause the Editor to go into Text Mode. At this time you should type 

4-1 



the text to be operated on by the command. This can include the non­

printing characters discussed below, as well as spaces and tabs (up to 

eight spaces generated by the CTRL/TAB keys). 

Note that typing the RETURN key always causes the physical return 

of the Teletype ball to the beginning of the line, and automatically 

generates a line feed the~eby advancing the carriage to a new line. 

In Text Mode, the RETURN key not only serves these mechanical functions, 

allowing you to continue typing at the beginning of a new line, but at 

the same time it enters a carriage return and line feed character into 

the text. (A carriage return not follOwed by a line feed cannot, 

therefore, be entered from the keyboard.) 

These are both counted as characters and can be edited along 

with the printing characters (as can the form feed, discussed in 

Section 4.2.5). When you wish to terminate Text Mode and reenter 

Command Mode, you must type the LINE FEED key (sometimes symbolized 

as +). A typed LINE FEED is not considered to be part of the text 

unless it is the first character entered in Text Mode. 

4.2 COMMAND DELIMITERS 

4.2.1 Arguments 

Some ED-II commands require an argument to specify the particular portion 

of text to be affected by the command or how many times to perform the com-

mand.In other commands this specification is implicit and arguments are 

not allowed .. 

The ED-II command arguments are described as follows: 

1. 
15 n stands for any number from 1 to 32767'0 (2 -1) and may, 

except where noted, be preceded by a + or -. 

If no sign precedes n, it is assumed to be a positive 
number. 

4-2 

( 

( 

( 



( 

( 

2. 

3. 

4. 

---- ----~.-.~~~---""-:--

Where an argument is acceptable" its absence implies 
an argument of 1 (or -1 if a - is present). 

The role of n varies according to the command it is 
associated with. 

o refers to the beginning of the current line. 

@ refers to a marked (designated) character location 
(see Section 4.2.3). 

/ refers to the end of text in the Page Buffer. 

The roles of all arguments will be explained further with the cor­

responding commands which qualify them. 

4.2.2 The Character Location Pointer (Dot) 

Almost all ED-II commands function with respect to a movable reference 

point, Dot. This character pointer is normally located between the most 

recent character operated upon and the next character; and, at any given 

time, can be thought of as "where the Editor is" in your text. As will 

be seen shortly, there are commands which move Dot anywhere in the t'ext, 

thereby redefining the "current location" and allowing greater facility 

in the use of the other commands. 

4.2.3 Mark 

In addition to Dot, a secondary character pointer known as Mark also exists 

in ED-II. This less agile pointer is used with great effect to mark or 

"remember" a location by moving to Dot and conditionally remaining there 
(' \, while Dot moves on to some other place in the text. Thus, it is possible 

( 

to think of Dot as "here" and Mark as "there". Positioning of Mark, which 

is referenced by means of the argument @, is discussed below in several 

commands. 

4.2.4 Line-Oriented Command Properties 

ED-II recognizes a line as a unit by detecting a line-terminator in the 

text. This means that ends of lines (line feed or form feed characters) 

are counted in line...,oriented commands. This is important to know,'parti­

cularly if Dot, which is a character location pointer, is not pointing at 

the first character of a line. 

In such a case, an argument n will not affect the same number of 

4-3 



lines (forward) as its negative (backward). For example, the argument-l 

applies to the character string beginning with the first character following 

the second previous end-of-1ine character and ending at Dot; argument +1 ap- (_ ... -

plies to the character string beginning at Dot and ending at the first end­

of-line character. If Dot is located, say, in the center of a line, notice 

that this would affect 1-1/2 lines back or 1/2 line forward, respectively: 

Example of List Commands -lL and +lL: 

Text 

CMPB ICHAR,#,033 
BEQ $ALT 
CMPB~HAR' # 1 7 5 
BNE LACE 

Dot is here 

4.2.5 The Page Buffer 

Command 

*-lL 

*+lL 

Printout 

BEQ $ALT 
CMPB I 

CHAR,!~Dot remains t .... here 

The Page Buffer holds the text being edited. The unit of source data that 

is read into the Page Buffer from a paper tape, is the page. Normally, a 

page is terminated, and therefore defined by a form feed (CTRL/FORM) in the 

source text wherever a page is desired. (A form feed is an acceptable Text 

Mode character.) Overflow, no-tape, or reader-off conditions can also end 

a page of input (as described in Section 4.3.1.2). Since more than one 

page of text can be in the buffer at the same time, it should be noted that 

the entire contents of the Page Buffer are available for editing. 

4.3 COMMANDS 

4.3.1 Input and Output Commands 

Three commands are available for reading in a page of text. The Read com­

mand (Section 4.3.1.2) is a specialized input command; the Next command 

(Section 4.3.1.4) reads in a page after punching out the previous page; 

and the wHole command (Section 4.3.3.2) reads in and punches out pages 

of text as part of a search for a specified character string. 

( 

( 

( 

Output commands either list text or punch it on paper tape. The List 

command causes specified lines of text to be output on the teleprinter so 

that they may be examined. Paper tape commands (Next and wHole also per­

form input) provide for the output of specified pages, lines, form feeds ( 

(for changing the amount of data that constitutes a given page), and blank 

4-4 



(-, 

( 

( 

( 

tape. Note that the process of outputting text does not cause Dot to 

move. 

4 . 3 . 1. 1 Open 

The Open command (0) should be typed whenever a new tape is put in the 

reader. This is used when the text file being edited is on more than 

one paper tape. 

Note also, that if the reader is off at the time an input command is 

given, turning the reader on must be followed by the Open command. 

4.3.1.2 Read 

One way of getting a page of text into the Page Buffer so that it can be 

edited is by means of the Read(R) command. The command R causes a page of 

text to be read from either the low-speed reader or high-speed reader (as 

specified in the starting dialogue, Section 4.4.2), and appended to the 

contents (if any) of the Page Buffer. 

Text will be read in until either: 

1. A form feed character is encountered; 

2. The page buffer is 128 characters from being 
filled, or a line feed is encountered after the 
buffer has become 500 characters from being filled; 

3. The reader is turned off, or runs out of paper tape 
(see Open command, Section 4.3.1.1). 

Following execution of an R command, Dot and Mark wil: be located at 

the beginning of the Page Buffer. 

A 4K system can accommodate about 4000 characters of text. Each addi­

tional 4K of memory will provide space for about 8000 characters. 

NOTE 

An attempt to overflow the storage area will 
cause the command (in this case, R) to stop 
executing. A? will then be printed, followed 
by an * on the next line indicating that a com­
mand may be typed. No data will be lost. 

4- 5 



4.3.1.3 List and Punch 

Output commands List (L) and Punch (P) can be described together, as they 

differ only in that the device addressed by the former is the teleprinter, 

and the device addressed by the latter is the paper tape punch. Dot is 

not moved by these commands. 

nL. 
nP 

-nL 
-nP 

OL 
OP 

@L 
@P 

IL 
IP 

Lists ) 
Punches 

Lists } 
Punches 

Lists ~ 
Punches) 

Lists J 
Punches 

Lists } 
Punches 

the character string beginning at Dot and 
ending with the nth end-of-line 

the character string beginning with the 
first character following the (n+l)th pre­
vious end-of-line and terminating at Dot 

the character string beginning with the 
first character of the current line and 
ending at Dot 

the character string between Dot and the 
Marked location 

the character string beginning at Dot and 
ending with the last character in the Page 
Buffer 

In addition to the above List commands, there are three special List com­

mands that accept no arguments. The current line is defined as the line 

containing Dot, i.e., from the line feed (or form feed) preceding Dot to 

the line feed (or form feed) following Dot. 

v 

< 

> 

Examples: 

TEXT 

CMPB ICHAR,#~33 
BEQ $ALT 

~. 
CMPB HAR,#175 
BN .. LACE 

Dot is here. 

Lists the entire line containing Dot 

Same as -IL. If Dot is located at the 
beginning of a line, this simply lists 
the line preceding the current line 

Lists the line following the current line 

COMMANDS 

v 
< 

> 

4-6 

CMPB 
BEQ 
CMPB 
BNE 

PRINTOUT 

Dot remains here. 

r 

( 

( 

( 

( 



( 

4.3.1.4 Next 

Typing nN punches out the entire contents of the Page Buffer (followed by 

a trailer of blank tape if a form feed is the last character in the buffer), 

deletes the contents of the buffer, and reads the Next page into the buf­

fer. It performs this sequence n times. If there are fewer than the n 

pages specified, the command will be executed for the number of pages ac­

tually available, and a ? will be printed out. Following execution of a 

Next, Dot and Mark will be located at the beginning of the Page Buffer. 

4.3.1.5 Form Feed and Trailer 

F Punches out a Form feed character and four inches of 
blank tape 

nT Punches out four inches of Trailer (blank) tape n times 

4.3.1.6 Procedure with Low-Speed Punch 

If the low speed punch is the specified output device (see Section 4.4.2), 

the Editor pauses before executing any tape command just typed (Punch, 

Form feed, Trailer, Next, wHole). The punch must be turned on at this time, 

after which, typing the SPACE bar initiates the execution of the command. 

Following completion of the operation, the Editor pauses again to let you 

turn the punch off. When the punch has been turned off, typing the SPACE 

( bar returns ED-II to Command Mode. 

4.3.2 Commands to Move Dot and Mark 

4.3.2.1 Beginning and End 

B Moves Dot to the Beginning of the Page Buffer 

E Moves Dot t9 the End of the Page Buffer (see also /J and /A 
below) 

4.3.2.2 Jump and Advance 

nJ Jumps Dot forward past n 
characters 

-nJ Moves Dot backward past n 
characters 

OJ or OA Moves Dot to the 

@J or @A Moves Dot to the 

/J or /A Moves Dot to the 
E above) 

nA Advances Dot forward past n 
ends-of-lines to the begin­
ning of the succeeding line 

-nA Moves Dot backwards across n ends­
of-lines and positions Dot immedi­
ately after n+l ends of lines, i.e., 
at the beginning of the -n line. 

beginning of the current line 

Marked location 

end of the Page Buffer (see also 

4-7 



Notice that while n moves Dot n characters in the Jump command, its role 

becomes that of a line counter in the Advance command. However, because 

O,@, and / are absolute, their use with these commands overrides line/ 

character distinctions. That is, Jump and Advance perform identical func­

tions if both have either 0, @ or / for an argument. 

4.3.2.3 Mark 

The M command marks ("remembers") the current position of Dot for later 
reference in a command using the argument @. Note that only one position at 

a time can be in a marked state. Mark is also affected by the execution of 

those commands which alter the contents of the Page Buffer: 

C o H I K N R x 

4.3.3 Search Commands 

4.3.3.1 Get 

The basic search command nG starts at Dot and Gets the nth occurrence of 

the specified text in the Page Buffer. If no argument is present, it is 

assumed to be 1. When you type the command, followed by the RETURN key, 

ED-ll will go into Text Mode. The character string to be searched for must 

now be typed. (ED-ll will accept a search object of up to 42 characters 

in length.) Typing the LINE FEED key terminates Text Mode and initiates 

the search. 

This command sets Dot to the position immediately following the found 

character string, and a OL listing is performed by ED-ll. If a carriage 

return, line feed, or form feed is specified as part of the search object, 

the automatic OL will only display a portion of text -- the part defined 

as the last line. Where any of these characters is the last character of 

the search object, the OL will of course yield no printout at all. 

If the search is unsuccessful, Dot will be at the end of the Page Buf­

fer and a ? will be printed out. The Editor then returns to Command Mode. 

4-8 

( 
" 

( 

( 



( 

( 

Examples: 

1. Text 

MOV @RMAX, @R5 
ADD #6, (R5)+ 
CLR $CK3 
TST R2 
BEQ CKCR 

Dot was here. 

2. CMPB 
BEQ 

(BR 

ICHAR,#RUBOUT 
SITE 
PUT 

Dot 

4.3.3.2 wHole 

Command 

2G.J 
CK'" 

Printout 

BEQ CK 

Dot is 

A second search command, H, starts at Dot and looks through the wHole text 

file for the next occurrence of the character string you have specified 

in Text Mode. It combines a Get and a Next such that if the search is not 

successful in the Page Buffer, the contents of the buffer are punched on 

tape, the buffer contents are deleted, and a new page is read in, where 

the search is continued. This will proceed until the search object is found 

or until the complete source text has been searched. In either case, Mark 

will be at the beginning of the Page Buffer. 

If the search object is found, Dot will be located immediately follow­

ing it, and a OL will be performed by ED-II. As in the Get command, if 

( the search is not successful Dot will be at the end of the buffer and a ? 

will appear on the teleprinter. Upon completion of the command, the Editor 

will be in Command Mode. No argument is allowed. Note that an H command 

specifying a nonexistent search object can be used to close out an edit, 

i.e., copy all remaining text from the input tape to the output tape. 

4.3.4 Commands to Modify the Text 

4.3.4.1 Insert 

The Insert command lI) allows text to be inserted at Dot. After I is typed 

(followed by the typing of the RETURN key), the Editor goes into Text Mode 

(c to receive text to be inserted. Up to 80 characters per line are accept­

able. Execution of the command occurs when the LINE FEED key (which does 

4-9 



not Insert a line feed character unless it is the first key typed in Text 

Mode) is typed terminating Text Mode. At this point, Dot is located in 

the position immediately following the last inserted text character. If 

the Marked location was anywhere after the text to be Inserted, Dot becomes 

the new Marked location. 

During an insert, it sometimes happens that the user accidentally types 

CTRL/P rather than SHIFT/P (for @), thus deleting the entire insert (see 

Section 4.4.1). To minimize the effect of such a mistake, the insert may 

be terminated every few lines and then continued with a new Insert command. 

As with the Read command, an attempt to overflow the Page Buffer will 

cause a ? to be printed out followed by an * on the next line indicating 

that a command may be typed. Allor part of the last line typed may be 

lost. All previously typed lines will be inserted. Examples: 

Text Command Effect 

1. MOV #8. 'EK~ Ij MOV #8.,EKOC, 
CN+ 

Dot Dot 

2. Inserting a carriage return (and automatic line feed): 

CLR R1LR R2 Y CLR Rl 
CLR R2 

Do + 

3. Inserting a single line feed: 
Ij 

LOOK WHAT HAPPENS HERE + LOOK WHAT 
? + tHAPPENS HERE 

Dot 
Dot 

4.3.4.2 Delete and Kill 

( 

( 

( 

These commands are closely related to each other; they both erase specified 

text from the Page Buffer. The Delete command (D) differs from the Kill 

command (K) only in that the former accepts an argument, n, that counts 

characters to be removed, while the latter accepts an argument, n, that 

counts lines to be removed. 0, @, and / are also allowed as arguments. ( 

After execution of these commands, Dot becomes the Marked location. 

4-10 



r 

( 
\ 

( 

( 

1. 

2. 

nD 

-nD 

OD or 

@D or 

/D or 

Deletes the following n 
characters 

nK Kills the character string 
beginning at Dot and ending 
at the nth end-of-line 

Deletes the previous n 
characters 

-nK Kills the character string 
beginning with the first 
character following the (n+l)th 
previous end-of-line and end­
ing at Dot 

OK Removes the current line up to Dot 

@K Removes the character string bounded by Dot and Mark 

/K Removes the character string beginning at Dot and 
ending with the last character in the Page Buffer 

Text Command Effect 

iCHECK THE MOZXDE 

Dol 
-2D iCHECK THE MrE 

Dot 

iIS IT A 
iIS IT A 

TA~OR 
CRJ 

Dot 

2K iIS IT A 

4.3.4.3 Change and eXchange 

The Change (C) and eXchange (X) commands can be thought of as two-phase 

commands combining, respectively, an Insert followed by a Delete, and 

an Insert followed by a Kill. After the Change or eXchange command is 

typed, ED-II goes into Text Mode to receive the text to be inserted. If 

±n is used as the argument, it is then interpreted as in the Delete (charac­

ter-oriented) or Kill (line-oriented), and accordingly removes the indicated 

text. 0, @, and / are also allowed as arguments. 

nC 
xxxx 
xxxx 

-nC 
xxx 

Changes the following 
n characters 

Changes the previous 
n characters 

nX 
xxxx 
xxxx 

-nX 
xxx 

eXchanges the character 
string beginning at Dot and 
ending at the nth end­
of-line 

eXchanges the character 
string beginning with _ 
the first character fol­
lowing the (n+l)th pre­
vious end-of-line and 
ending at Dot 

OC or OX 
xxxx xxxx 
xxxx xxxx 

Replaces the current line up to Dot 

4-11 



@C or @X Replaces the character string bounded by Dot 
xxx xxx and the Marked location 
xxx xxx 

/C or /X Replaces the character string beginning at Dot 
xxx xxx and ending with the last character in the Page 

Buffer. 

Again, the use of absolute arguments 0, @, and / overrides the line/character 

distinctions that nand -n produce in these commands. 

If the Insert portion of a Change or eXchange is terminated because of 

attempting to overflow the Page Buffer, data from the latest line may have 

(~. 

been lost, and text removal will not occur. Such buffer overflow might be 

avoided by separately executing a Delete or Kill followed by an Insert, rather 

than a Change or eXchange, which does an Insert followed by a Delete or Kill. ( 

Examples: 

Text 

iA LINE 

iTHIS 
iIS ON 
"POUR 

\LINES 

Dot 

PEED IS HERE 

j 

4.4 OPERATING PROCEDURES 

4.4.1 Error Corrections 

Command 

-9C.) 
TABi-
2X.) 
P.APERi-

Effect 

HERE 

During the course of editing a page of the program, it may become necessary 

to correct mistakes in the commands themselves. There are four special 

commands which do this: 

a. Typing the RUBOUT key removes 
if it is on the current line. 
ceding characters on the line 
ter for each RUBOUT typed. 

the preceding typed character, 
Successive RUBOUTs remove pre­

(including the SPACE), one charac-

b. The CTRL/U combination (holding down the CTRL key and typing 
U) removes all the characters in the current line. 

c. CTRL/P cancels the current command in its entirety. This in­
cludes all the current command text just typed, if ED-ll was 
in Text Mode. Care should be taken in not using another CTRL/P 
before typing a line terminator as this will cause an ED-ll re-
start (see d. below). If CTRL/P is typed while 

4-12 

( 

( 



( 

( 

( 

( 

a found search object of a Get or wHole is being 
printed out, the normal position of Dot (just after 
the specified search object) is not affected. 

CTRL/P should not be used while a punch operation 
is in progress as it is not possible to know exactly 
how much data will be output. 

d. Two CTRL/P's not interrupted by a typed line termi­
nator will restart ED-II, initiating the dialogue 
described in Section 4.4.2. 

After removing the incorrect command data, the user can, of course, 

directly t~pe in the desired input. 

4.4.2 Starting 

The Editor is loaded by the Absolute Loader (see Chapter 6, Section 6.2.2) 

and starts automatically. Once the Editor has been loaded, the following 

sequence occurs: 

ED-II Prints 

*I 

*0 

User Types 

L.J (if the Low-speed Reader is to be used for 
source input) 

H) (if the High-speed Reader is to be used for 
source input) 

H) 

(if the Low-speed Punch is to be used for 
edited output) 

(if the High-speed Punch is to be used for 
edited output) . 

If all text is to be entered from the keyboard (i.e., via the Insert 
command), either L or H may be specified for Input. 

If the output device is the high-speed punch (HSP), the Editor enters 

Comman¢! Mode to accept input. Otherwise, the sequence continues with: 

LSP OFF? ~ (when Low-speed Punch (LSP) is off) 

Upon input of ~ from the keyboard, the Editor enters Command Mode 

and is ready to accept input. 

4-13 



4.4.3 Restarting 

To restart ED-II, type CTRL/P twice. This will initiate the normal start- ~, 
ing dialogue described in Section 4.4.2. If the Low-speed Reader (LSR) 

is in operation it must first be turned off. The text to be edited should 

be loaded (or reloaded) at this time. 

4.4.4 Creating a Paper Tape 

Input commands assume that text will be read in from a paper tape by means 

of the low-speed reader or high-speed reader. However, the five commands 

that go into Text Mode enable the user to input from the keyboard. The 

fnsert command, in particular (Section 4.3.4.1) can be useful for enter-

ing large quantities of text not on paper tape. The Page Buffer can thus (C 
be filled from the keyboard, and a paper tape actually created by then using 

a command to punch out the buffer contents. 

4.4.5 Editing Example 

The following example consists of three parts: 

a. The marked up source program listing indicating the desired 
changes. 

b. The ED-II commands to implement those changes (with comments 
on the editing procedure). 

REMINDER 

Typing the RETURN key terminates Command 
Mode in all cases. In commands which then 
go into Text Mode, typing the LINE FEED key 
(symbolized as i-) produces the terminator. 

c. The edited text. 

4-14 

( 

( 



( 

( 

( 

PART I Original Source for Edit 

leo ~ ~; 0 ~. u ~ PUT R 0 IJ TI hi r r 0 R 11 S E R V NON F'l U: 0 r: V ICE S 

$lNPUTr t.ne 
r: L R 
~1nv 

Mnv 

$ C K t~ ODE : fi I n, 

$CKNUL: 

SCKPARI 

SJF2CKI 

CKUPP: 

FlNE 

TSTB 
~EGl 

BITh 
R"JE 
MOVe 
~jSR 
~U8 

REG! 
L·! S 
f'!LR 
BIC 
r.MPe 
R'NE 
iSTB 
I1EQ 
r.LR 
~jMP 

iWHAT 
eMPS 
RNE 
MOV 
TNC 
MOV 
RR. 

r.MPB 
REQ 
RR 

ICHAf~, (R5). 
:'CLS) 
(RS)+,RMAX 
CR5)+,MODAOR 

{iI".;nDIH:'F, #f'\SCI I 

CK8IN 

ICHAR 
CK 

@lMODADR.#PARBtT 
PAROK 
ICHAR.OCHAR 
R7,PARGEN 
tCHAR,OCHAR 
PAROK 
#PARERR,~"10DADR 
OCHAR 
#177200.ICHAR 
@lHHRADD) • #K8D 
OK0 
EKOCNT 
$OK 
iCHAR 

.UPDATE CKSUM 
J CI EAR DO~,'E 
.GET ADR i'AAX 
,GET ADR MODE 
.R5 NO~ PO 1 rJTS TO POINTER 

; IS 'Iii I S ASCII 
JNO---TRY BINARY 

JASCII"':-IS C~AR A NULL 
JYES--NO GO 

.LOOK AT MODE TO SEe: Ir 
jSlJPPOSED TO CHECK PARiTY? 
,NO 
I n:S--"CK IT 

J 
iOK? 
INO---SET ERR BIT 

iSTRIP PARITY 
~IS THIS KBD INPUT 
fNo 
,VES---OONE EKO Of LAST? 
IYES 
iNO- .... OROP NEW CHAR 

CKA _____________ DUN 

is THE CHAR 
ICHAR,#CTRLC 
CI'iWpp -
#UPC,OCHA~ 

HDUN 
#ABRTAD.20(R6) 
PLUS1 

I AR,#CTRLP 
K1 

REST AD 
OK0 
RESTAO; 
ICHAR 
ROUN 
#UP ,OCHAR 
P Sl 

iCHAR,#RJBOUr 
CK 
PUT 

I~HA ,#RU 
CK U 
i AR 

J I SIT Ate OV~) 
j NO "'If 
I YE:S~-ECHO tC 

ioioOLE REtURN ADR 

4-15 



CKTAS: r.MPR 
RNE 
MnV 
MOV 
RR 

r!I<CR: r:MP8 
RNE 
~..oV 
p~C 
RR 

5CI<(: r.MPB 
~E;Q 
r:MPB 
~f:~ 
r:MPR 

.; AL' It 
R~E 
tq 0 IJ 

A ~nv 

1;~C 
~R 

CKLF'I. CMPB 
~~E 
INC 
RR 

CI<F'F' & t-lQV 
r.MP8 
FINE 
MOV 
~OV 
RR 

2 (R5----­
CK 
#9 LASH,OCHA 
( 5) + 

R5 
EKO 

~CHAR,# 

CKTAB 
#UPU, CHAR 
ICHA 
@lRM X,@)R5 
#6, tR5)+ 
@'H 
E~O 
JCHAR.#HTAB 
CKCR 
#BLNKS,OCHAR 
TABCNT;EKOCNT 
PUT 

iCHAR,#CR 
$CK3 
#CRLF',QCHAR 
RDUN 

JIS IT A TAB 
,NO 
'YES---ECHO BLANKS 
iSET UP COUNTER 

• 
JIS IT A CR? 
.NO ~ 
JYES---(CHO CRLF' 

PLUSl liLT 

( 

I CHAR, #12133 /t---__ _ 

~ ~~ r R • # 17 5 - ; 15 ell III{ Ifll/ ilL i!'tOPE? ( . 
$ALT 
ICHAR,#176 E)( 
CK~------------
#DOL.OCH.IIR "tS 

iCHAR,OCHAR 
ICHAR,#F'F' 
PUT 
#8.,EKOCNT 
#LF'LF',OCIiAR 
PUT 

4-16 

( 

( 



~ ~ • __ . ~_, ___ ~_~ _. _-~~~~~""""""'~~_-'"'-"-'-=''-__ ~_'-___ -'-'-_~''-'-'''-'''--'_'-'_--''~O"_"" _______ .• _"_ ....... _~_"-"-__ ~._._-=-.-.:;.., ____ , __ ~ _____ "--..,.., __ "---,...-. ___ .,_ .. __ . ______ ._ .. ___ ~_-', ____ "_",,,. ____ ,_,,",---______ ~ ~~_--__ ; ... ___ ""---'-,.,-,~",,-___________ ~ .. __ -,~ ___ ,,,-~-.. "--== 

( 

( 

( 

Part II: Editing Session 

Assume that ED-II has been started, is in Command Mode, and the tape is in 

the reader. 

*R 

*H 
2CK:~ 
$JP2CK: 

*G 
CK~ 
$JP2CK 

*I 
DUN~ 

*G 
CKUPP~ 

*-SC 
OK.0~ 

*6A 

*9K 

*L 

*I 

~ 
*A 

*4X 

*G 
CKINP:~ 
CKINP: 

*.0J 

~/K 

JMP 

BNE 

Underlined matter indicates ED-II output. 

CK 

CKUPP 

;Reads in a page of text 

;Searches entire program for 2CK; 
;when found ED-II performs a OL 

;Searches current page for next CK -
;when found ED-II performs a OL 

;Inserts DUN following CK 

;Searches for next CKUPP -
;when found ED-II performs a OL 

;OKO replaces last 5 characters (CKUPP) 

;Dot is moved 6 lines ahead (including 
;a blank line) 

;9 lines are killed starting with CKUPP: 

;Next line is listed - Dot is not moved 
;THIS IS NOT KBD INPUT 

;Blank line is inserted 

;Dot is moved 1 line ahead to point to 
;character 0 of OKO: 

;Following comments replace the next 4 
; lines-
;FORMATTED AND UNFORMATTED 
;ASCII ARE HANDLED THE SAME~ 

;Searches for next CKINP: -
;OL printout occurs when found 

;Dot is moved to the beginning of the 
;current line. 

;The rest of the page is killed (3 lines) 

4-17 



*N 

*L 
TST 2 (R5) 

*15K 

*2L 

; BC=.0? 

;Current page is punched out on paper tape -
;a new page is read in 

i~he next line is listed - Dot is not moved 

;15 lines are killed starting with TST 

;1 blank line and 1 line of text 
iare listed - Dot is not moved 

---------------------------------------------------------------------------------~, 
CKTAB: CMPB ICHAR,#HTAB iIS IT A TAB 

*2G 
$CK3-r 
$CK3 

*-C 
ALT-r 

iSearches for 2nd occurrence of $CK3 
;OL printout verifies it is found 

iALT replaces preceding character 

*v iLists entire current line to verify 
$CKALT: CMPB ICHAR,#.033 ithe above -C result 

*G 
j'33-r 
$CKALT: CMPB ICHAR,#.033 

*1 

*G 
CKLF-r 

BNE CKLF 

iSearches for the 033 to position Dot 
;for next command -- OL occurs 

i '.I.'he following text is inserted in the 
icomment field 

iIS CHAR AN ALTOMODE? 

iSearches for next CKLF -- OL occurs 

*-2C ;EX replaces the preceding two characters 
EX-r ; (LF) 

*2J 

*K 

*1 
$ALT:-r 

*A 

*M 

*B 

*@P 

iJumpS Dot past the carriage return and 
iline feed characters 

iKills next line (starting with$ALT:) 

iInserts $ALT:at beginning of the fol­
ilowing line 

iAdvances Dot past 1 line feed to the 
ibeginning of the next line 

;Marks the position of Dot 

iMoves Dot to the beginning of the cur­
irent page 

;Punches o~t the lines from Dot to the 
iposition just marked - Dot not moved 

4-18 

( 

( 

( 

( 



r 

( 

( 

( 

( 

*@A 

*2K 

*' 

iMoves Dot from the beginning of the 
ipage to the marked position 

iKills the next 2 lines 

4-19 



PART III Edited Source 

I r.O~"·1J\: I .~ F' LI T ROUT P~F' rOR USE: BV NON f"IlE DEVICES 

S i [\JPiJTI ADD Ie ,.1 A R , ( R, ) • 'U~OATE CKSUM 
r; I. ~ .:. (L S ) JCIEAR on.!\lE 
,.'nv (~5)+,F(r.Ud( .GET AD~ MAX 
~nv (k5)+,MOOAD~ JGF'T AOR ~~OOE 

IRS NOW ponns TO POINTER 

SCK~"'Dr::BITB @MODl'lnp, #i\SCII ;1S THIS ASCI I 

~NE CKAI:'>I JNO-- .. TRY BINARY 

SCKNUli TSTP. lCHAR )ASCI 1·:::' ... 15 CHAR A NULL 
flF.:C CK IYES .... NO GO 

IlnOK AT MODE TO sn: IF 
SCKPARI RITE lc., ~1 0 !) A 0 R • # P A q a I T ISUPPOSED TO C~EC!( PARITY7 

RNE rARot< ,NO /' 

MOVA ICHAR,OCHAR JYE'S .... ·CK IT ( 
.ISH R7,PARGEN 
~LJH ICHAR,OCHAR J 
F;£O PAKOK iOK? 
HIS #?ARERR,@"100AOR • Nn ....... SET ERR BIT 

PAROl<: CLH ('C"'.I\R 
BIC 11117200.!CHAR .STRIP PARtTY 
(,,:MPR rr·lit(RAOD) .#KRD tIs THIS KBD INPUT 
RNE: l; K 2! INCl 
TST~ rr(OCNT .VF.:S., .... DONE EKO OF' LAST? ( 
~EQ ~Oi': JvrS 
CLR ICi-iAR I NO ... ", ... OROP NEW CHAR 

SJP2CKI .J~? . cKDUN 

JWHAT IS THE CHAR 
sow: r.MPS ICHA.R,#CT~lC lIS IT A tC 

Flt.JE OK~ ,NO 
t<lnv #uPC.OCHAR ''''ES''"~ECHO tC 
tNC ROllN .-

I,;nv ttA8RTAO,2Z(R6) 10IOoL£ RETURN ADR ( 
fiR PLU31 

ITHIS IS NOT 1(80 INPUT 
,rORMATTEn ANO UNf"ORt4A TT£n 
I A SC II ARE I-lANDL[D THE SAME 

r.MPR ICrlAR,#RUBOUT ItS THIS A. RUBOUT 
hr,c.: r.~ IYES.., ... ·IGNO~E IT 
RI:! PUT 'Nn ..... • 

( 

4-20 



r-
CI<TA'~1 rt.Ar: Q 1; ; ; A '( , # fH A ~; , IS 1 T A TAB 

~ ~~ [ L!\Grt INn 
H1'J i, ~)L;"'I:'<S, QC'HAQ ,vrS"· .. ECi-lO 8LA~K~ 

'~n v T AS C In. E f:') C 'H ISET UP C:lU~TER 

F-R P'JT I 

CKCRI CMPq 1 Ci"AIi. tiC; J IS 1 T A CR? 
r,r-.:E ~ G;, 3 pIn 
I'IOV IICRLF.OCL.I~R JVES .... .,EC~O CRLF 
Tt~C RJUN 
~R F'LL'Sl 

SCKALTI r.MOB ICHAR,#12!33 I IS CHAR Ai~ ALT:-IODE? 
H[ t:: 'tAL.T 

/ 
r.HP~ lCHAR,lr175 J 

\ R F"l~ g;AL T 
r:t-';:lR JCHAR,#176 
Rf\JE eKE x 

$ At T: f"iOV J!175.ICHAR 
CKt F I r. t~ j!'; tCiiAR,#LF 

r.; r,: t CKFF 
tNt PSilJ,N 
~R pi.) T 

( r!I<FFI r'i r- v ICHAR,OCHAR 
r.tI.~r: ICHAR,#FF 
Rr-.'E PUT 
t<lClV ;tU.,EKOC~T 

Mr'lv ilLF'LF',QCHAR 
RR F-UT 

4-21 



4.5 SOFTWARE ERROR HALTS 

ED-II loads all unused trap vectors with the code 

. WORD .+2,HALT 

so that if the trap does occur, the processor will halt in the second word 

of the vector. The address of the halt, displayed in the console address 

register, therefore indicates the cause of the halt. In addition to the 

halts which may occur in the vectors, the standard lOX error halt at loca­
tion 40 may occur (see Chapter 7). 

Address of HALT 

12 

16 

26 

32 

36 

40 

Meaning 

Reserved instruction executed 

Trace trap occurred 

Power fail trap 

EMT executed 

TRAP executed 

lOX detected error 

4-22 

( 

( 

( 



CHAPTER 5 

DEBUGGING OBJECT PROGRAMS ON-LINE 

5.1 
5.1.1 
5.1. 2 

INTRODUCTION 
ODT-ll and ODT-llX 
ODT's Command Syntax 

COMMANDS AND FUNCTIONS 5.2 
5.2.1 
5.2.1.1 
5.2.1.2 
5.2.1.3 
5.2.1.4 
5.2.1.5 
5.2.1.6 
5.2.2 
5.2.2.1 
5.2.2.2 
5.2.3 
5.2.4 
5.2.4.1 
5.2.4.2 
5.2.5 
5.2.6 

Opening, Changing, and Closing Locations 
The Slash, / 
The LINE FEED Key, + 
The Up-Arrow, t 
The Back-Arrow, + 

Accessing General Registers 0-7 
Accessing Internal Registers 

Breakpoints 
Setting the Breakpoint, niB 
Locating the Breakpoint, $B 

Running the Program, niG and niP 
Searches 

Word Search, niW 
Effective Address Search, 

Calculating Offsets, niO 
ODT's Priority Level, $p 

niE 

ODT-llX 5.3 
5.3.1 
5.3.1.1 
5.3.1.2 
5.3.1.3 
5.3.2 
5.3.3 
5.3.4 

Opening, Changing, and Closing Locations 
Opening the Addressed Location, @ 
Relative Branch Offset, > 
Return to Previous Sequence, < 

Calculating Offsets, niO 
Breakpoints 
Single-Instruction Mode 

5.4 

5.5 
5.5.1 
5.5.2 
5.5.3 
5.5.4 

5.6 
5.6.1 
5.6.2 
5.6.3 

ERROR DETECTION 

PROGRAMMING CONSIDERATIONS 
Functional Organization 
Breakpoints 
Search 
Teletype Interrupt 

OPERATING PROCEDURES 
Loading Procedures 
Start and Restart 
Assembling ODT 

5-i 

5-1 
5-1 
5-2 

5-4 
5-4 
5-4 
5-5 
5-6 
5-6 
5-7 
5-7 
5-8 
5-8 
5-9 
5-10 
5-11 
5-12 
5-12 
5-13 
5-14 

5-14 
5-14 
5-15 
5-15 
5-15 
5-16 
5-16 
5-17 

5-18 

5-19 
5-20 
5-20 
5-25 
5-26 

5-27 
5-27 
5-27 
5-28 





( 

( 

( 

CHAPTER 5 

DEBUGGING OBJECT PROGRAMS ON-LINE 

5.1 INTRODUCTION 

ODT-ll (On-line Debugging Technique for the PDP-ll) is a system program - - - --
which aids in debugging assembled object programs. From the Teletype 

keyboard you interact with ODT and the object program to: 

• print the contents of any location for examination or 
alteration, 

• run all or any portion of your object program using the 
breakpoint feature, 

• search the object program for specific bit patterns, 

• search the object program for words which reference a specific 
word, 

• calculate offsets for relative addresses. 

During a debugging session you should have at the teleprinter the 

assembly listing of the program to be debugged. Minor corrections to the 

program may be made on-line during the debugging session. The program may 

then be run under control of ODT to verify any change made. Major correc­

tions, however, such as a missing subroutine, should be noted on the 

assembly listing and incorporated in a subsequent updated program assembly. 

A binary tape of the debugged program can be obtained by use of the 

DUMPAB program (see Chapter 6, Section 6.3). 

5.1.1 ODT-ll and ODT-llX 

There are two versions of ODT included in the PDP-ll Paper Tape Software 

System: a standard version, ODT-ll, and an extended version, ODT-llX. 

Both versions are independent, self-contained programs. ODT-llX has all 

the features of ODT-ll, plus some additional features. Each version is 

supplied on two separate paper tapes: a source tape and an absolute 

binary tape. The purpose of the tape~ and loading and starting procedures 

are explained in a later section of this chapter. 

ODT-ll is completely described in Section 5.2, and the additional 

features of ODT-llX are covered in Section 5.3. In all sections of this 

( chapter, except where specifically stated, reference to ODT applies to 

both versions. Concluding sections are concerned with ODT's internal 

5-1 



operations -- how breakpoints are effected, how it uses the "trace trap" 

and the T-bit, and other useful da.ta. Such information is not necessary 

to efficiently use ODT, but is available for anyone desiring such in­
depth information. 

The following discussion assumes that the reader is familiar with 

the PDP-11 instruction formats and the PAL-11A Assembly Language as 
described in Chapter 3. 

5.1.2 ODT's Command Syntax 

ODT's commands are composed using the following characters and symbols. 

They are often used in combination with the address upon which the opera­

tion is to occur, and are offered here for familiarization prior to 

their thorough coverage which follows. Unless indicated otherwise, 

n below represents an octal address. 

n/ open the word at location n 

/ reopen last opened location 

n\ 

\ 

1 

t 

RETURN 
2 

(SHIFT/L) open the byte at location n (ODT-11X only) 

reopen the last opened byte (ODT-11X only) 

(LINE FEED key) open next sequential location 

open previous location 

close open location and accept the next command 

take contents of opened location, index by contents of 
PC, and open that location 

@ take contents of opened location as absolute address and 
open that location (ODT-11X only) 

> take contents of opened location as relative branch 
instruction and open referenced location (ODT-11X only) 

< return to sequence prior to last @, >, or + command 
and open succeeding location (ODT-I1X only) 

$n/ open general register n (0-7) 

IThe circumflex, A, appears on some keyboards and printers in place 
of the up~arrow. 

(~ .. 

c 

( 

( 

2The underline, _, appears on some keyboards and printers in place C· 
of the back-arrow. 

5-2 



( 

( 

i B 

niB 

nirB 

separates commands from command arguments (used with 
alphabetic commands below) 

remove Breakpoint(s) (see description of each ODT 
version for particulars) 

set Breakpoint at location n 

set Breakpoint r at location n (ODT-llX only) 

irB remove rth !?reakpoint (ODT-llX only) 

niE search for instructions that reference Effective 
address n 

niW search for ~ords with bit patterns which match n 

inS 

is 

niG 

iP 

niP 

n/(word)miO 

$B/ 

$H/ 

$S/ 

$P/ 

enable Single-instruction mode (n can have any value 
and is not significant) i disable breakpoints 

disable ~ingle-instruction mode 

Go to location n and start program run 

Proceed with program execution from breakpointi stop 
when next breakpoint is encountered or at end of 
program 

In Single-instruction mode only (ODT-llX), Proceed to 
execute next instruction only 

Proceed with program execution from breakpointi 
stop after encountering the breakpoint n times. 

In Single-instruction mode only (ODT-llX), Proceed to 
execute next n instructions. 

calculate Offset from location n to location m 

ODT-ll, open Breakpoint status word 
ODT-llX, open !reakpoint 0 status word 

open search Mask 

open location containing user program's Status register 

open location containing ODT's ~riority level 

with ODT-ll, location references must be to even numbered l6-bit words. 

With ODT-llX, location references may be to l6-bit words or 8 bit 

bytes. 

The semicolon in the above commands is ignored by ODT-ll, but is 

used for the sake of consistency, since similar commands to ODT-llX 

require it. 

5-3 



5.2 COMMANDS AND FUNCTIONS 

When ODT is started as explained in Section 5.6, it will indicate its 

readiness to accept commands by printing an asterisk on the left margin 

of the teleprinter paper. In response to the asterisk, you can issue 

most commands; for example, you can examine and, if desired, change a 

word, run the object program in its entirety or in segments, or even 

search core for certain words or references to certain words. The dis­

cussion below will first explain some elementary features before covering 

the more sophisticated features. 

All commands to ODT are stated using the characters and symbols 

shown above in Section 5.1.2. 

5.2.1 Opening, Changing, and Closing Locations 

An open location is one whose contents ODT has printed for examination, 

and whose contents are available for change. A closed location is one 

whose contents are no longer available for change. Any even-numbered 

r t 

( 

location may be opened using ODT-ll. ( 

The contents of an open location may be changed by typing the new 

contents followed by a single character command which requires no argu­

ment (i.e., ~, ~ RETURN, +, @, >, <). Any command typed to open a loca­

tion when another location is already open, will first cause the 

currently open location to be closed. 

5.2.1.1 The Slash, I 

One way to open a location is to type its address followed by a slash: 

~10001012746 

Location 1000 is open for examination and is available for change. Note 

that in all examples ODT's printout is underlined; your typed input is 

not. 

Should you not wish to change the contents of an open location, 

5-4 

( 



r 

( 

( 

merely type the RETURN key and the location will be closed; ODT will 

print another asterisk and wait for another command, However, should 

you wish to change the word, simply type the new contents before 

giving a command to close the location. 

*1000/012746 012345 

* 

In the example above, location 1000 now contains 012345 and is closed 

since the RETURN key was typed after entering the new contents, as 

indicated by ODT's second asterisk. 

Used alone, the slash will reopen the last location opened: 

*1000/012345 2340 
~/002340 

As shown in the example above, an open location can be closed by typing 

the RETURN key. In this case, ODT changed the contents of location 1000 

to 002340 and then closed the location before printing the * We then 

typed a single slash which directed ODT to reopen the last location 

opened. This allowed us to verify that the word 002340 was correctly 

stored in location 1000. (ODT supplies the leading zeroes if not 

given.) 

Note again that opening a location while another is currently open 

will automatically close the currently open location before opening the 

new location. 

5.2.1.2 The LINE FEED Key 

If the LINE FEED key is typed when a location is open, ODT closes the 

open location and opens the next sequential location: 

*1000/002340 + 
001002/012740 

(+ denotes typing the LINE FEED key) 

( In this example, the LINE FEED key instructed ODT to print the address 
\ 

of the next location along with its contents and to wait for further 

instructions. After the above operation, location 1000 is closed and 

5-5 



1002 is open. The open location may be modified by typing the new 

contents. 

5.2.1.3 The Up-Arrow, t 

The up-arrow (or circumflex) symbol is effected by typing the SHIFT 

and N key combination. If the up-arrow is typed when a location is 

open, ODT closes the open location and opens the previous location 

(as shown by continuing from the example above) : 

001002/012740 
001000/002340 

t (t is printed by typing SHIFT and N) 

Now location 1002 is closed and 1000 is open. The open location may 

be modified by typing the new contents. 

5.2.1.4 The Back-Arrow, + 

The back-arrow (or underline) symbol is effected by typing the SHIFT 

and 0 key combination. If the back-arrow is typed to an open location, 

ODT interprets the contents of the currently open location as an 

address indexed by the Program Counter (PC) and opens the location so 

addressed: 

*1006/000006 + 
001016/100405 

( + is printed by typing SHIFT and 0) 

Notice in this example that the open location, 1006, was indexed by 

the PC as if it were the operand of an instruction with address mode 

67 as explained in Chapter 3. 

A modification to the opened location can be made before a -l-, t , 

or + is typed. Also, the new contents of the location will be used 

for address calculations using the + command. Example: 

*100/000222 4-l-
000102/000111 6 t 
000100/000004 100+ 
000202/(contents) 

(modify to 4 and open next location) 
(modify to 6 and open previous location) 
(change to 100 and open location indexed 
by PC) 

5-6 

( 

( 

( 

( 



(~. 

( 

( 

5.2.1.5 Accessing General Registers 0-7 

The program's general registers 0-7 can be opened using the following 

command format: 

~$n/ 

where n is the integer representing the desired register (in the range 

o through 7). When opened, these registers can be examined or changed 

by typing in new data as with any addressable location. For example: 

and 

*$0/000033 

*' 

*$4/000474 464 

*' 

(RO was examined and closed) 

(R4 was opened, changed, and closed) 

The example above can be verified by typing a slash in response to 

ODT's asterisk: 

Y000464 

The +, ~ +, or @ commands may be used when a register is open (the 

( @ is an ODT-llX command). 
\ 

5.2.1.6 Accessing Internal Re~isters 

The program's Status Register contains the condition codes of the most 

recent operational results and the interrupt priority level of the 

object program. It is opened using the following command: 

~$S/000311 

where $S represents the address of the Status Register. In response 

to $S/ in the example above, ODT printed the 16-bit word of which only 

the low-order 8 bits are meaningful: Bits 0-3 indicate whether a carry, 

overflow, zero, or negative (in that order) has resulted, and bits 5-7 

5-7 



indicate the interrupt priority level (in the range 0-7) of the object (i 
program. (See Chapter 1 of this manual or the PDP-II Handbook 

for the Status Register format.) 

The $ is used to open certain other internal locations: 

$B internal breakpoint status word (see Section 5.2.2.2) 

$M mask location for specifying which bits are to be 
examined during a bit pattern search (see Section 
5.2.4) 

$p 

$S 

location defining the operating priority of ODT 
(see Section 5.2.6) 

location containing the condition codes (bits 0-3) 
and interrupt priority level (bits 5-7) 

5.2.2 Breakpoints 

The breakpoint feature facilitates monitoring the progress of program 

execution. A breakpoint may be set at any instruction which is not 

referenced by the program for data. When a breakpoint is set, ODT 

replaces the contents of the breakpoint location with a trap instruc­

tion so that when the program is executed and the breakpoint is 

encountered, program execution is suspended, the original contents 

of the breakpoint location are restored, and ODT regains control. 

5.2.2.1 Setting the Breakpoint, niB 

ODT-ll provides only one breakpoint (ODT-llX provides eight break­

pOints). However, the breakpoint may be changed at any time. The 

breakpoint is set by typing the address of the desired location of 

the breakpoint followed by iB. For example: 

*102 0 i B 
'* 

sets the breakpoint at location 1020. The breakpoint above is 

changed to location 1120 as shown below. 

*1020i B 
'*1120i B 
'* 

5-8 

( 

( 

( 

,. 

' .. 



.~ 

( 

( 

( 

( 

Breakpoints should not be set at locations which are referenced 

by the program for data, or on an lOT, EMT, or TRAP instruction. This 

restriction is explained in Section 5.5.2. 

The breakpoint is removed by typing ;B without an argument, as 

shown below. 

*1120;B 
*;B 

"* 
(sets breakpoint at location 1120) 
(removes breakpoint) 

5.2.2.2 Locating the Breakpoint, $B 

The command $B/ causes the ODT-ll version to print the address of 

the breakpoint (see also Section 5.3.3 on $B in ODT-IIX): 

~$B/001120 

The breakpoint was set at location 1120. $B represents the address 

containing ODT-ll's breakpoint location. Typing the RETURN key in 

the example above will leave the breakpoint at location 1120 and 

return control to ODT-ll, or the breakpoint could be changed to a 

different location: 

*$B/001120 1114 
'*$B/001114 
'* 

The breakpoint was found in location 1120, changed to location 1114, 

and the change was verified. 

If no breakpoint was set, $B contains an address internal to 

ODT-ll. 

5-9 



5.2.3 Running the Program, niG and niP 

Program execution is under control of ODT. There are two conunands for 

running the program: niG and niP. The niG command is used to start 

execution (§.o) and niP to continue (E.roceed) execution after having 

halted at a breakpoint. For example: 

~lOOOiG 

starts execution at location 1000. The program will run until encounter­

ing a breakpoint or until program completion, unless it gets caught in 

an infinite loop, where you must either restart or reenter as explained 

in Section 5.6.2. 

When a breakpoint is encountered, execution stops and ODT-ll prints 

Bi followed by the address of the breakpoint. You may then examine 

desired locations for expected data. For example: 

*lOlOi B 
'*lOOOiG 
Bi001010 

* 

(breakpoint is set at location 1010) 
(execution started at location 1000) 
(execution stopped at location 1010) 

To continue program execution from the breakpoint, type iP in 

response to ODT-ll's last * 

When a breakpoint is set in a loop, it may be desirable to allow 

the program to execute a certain number of times through the loop before 

recognizing the breakpoint. This may be done by typing the niP command 

and specifying the number of times the breakpoint is to be encountered 

before program execution is suspended (on the nth encounter). (See 

Section 5.3.3 for ODT-llX interpretation of this command when more 

than one breakpoint is set in a loop.) 

Example: 

Bi001010 
*125 0 iB 
*4iP 
Bi001250 

* 

(execution halted at breakpoint) 
(set breakpoint at location 1250) 
(continue execution, loop through 
breakpoint 3 times and halt on the 
4th occurrence of the breakpoint) 

5-10 

(--

( 

c 

( 

( 



( 

( 

The breakpoint repeat count can be inspected by typing $B/ and 

following that with the typing of LINE FEED. The repeat count will 

then be printed. This also provides an alternative way of specifying 

the count. The location, being open, can have its contents modified 

in the usual manner by the typing of new contents and then the RETURN 

key. 

Example: 

*$B/001114 + 
nnnnnn/000003 6 
* 

(address of breakpoint is 1114) 
(repeat count was 3, changed to 6) 

Breakpoints are inserted when performing an n;G or niP command. 

Upon execution of the n;G or niP command, the general registers 0-6 

are set to the values in the locations specified as $0-$6 and the 

processor status register is set to the value in the location specified 
as $S. 

5.2.4 Searches 

With ODT you can search all or any specified portion of core memory 

for any specific bit pattern or for references to a specific location. 

The location represented by $M is used to specify the mask of 

the search. The next two sequential locations contain the lower and 

upper limits of the search. Bits set to 1 in the mask will be 

examined during the search; other bits will be ignored. For example, 

*$M/OOOOOO 177400 + 
nnnnnn/OOOOOO 1000 + 
nnnnnn/OOOOOO 1040 
* 

(+ denotes typing LINE FEED) 
(starting address of search) 
(last address in search) 

where nnnnnn represents some location in ODT. This location varies 

and is meaningful only for reference purposes. Note that in the first 

line above, the slash was used to open $M which now contains 177400, 

and that the LINE FEEDs opened the next two sequential locations which 

( now contain the lower and upper limits of the search. 

5-11 



5.2.4.1 Word Search n;W 

Before initiating a word search, the mask and search limits must be 

specified as explained above. Then the search object and the initiat­

ing command are given using the n;W command where n is the search 

object. When a match is found, the address of the unmasked matching 

word is printed. For example: 

*$M/OOOOOO 177400 ~ 
nnnnnn/OOOOOO 1000 } 
nnnnnn/OOOOOO 1040 
*400;W 
001010/000770 
001034/000404 

* 

(test high order eight bits) 

(initiating word search) 

In the search process, the word currently being examined and 

the search object are exclusive ORed (XORed), and the result is 

ANDed to the mask. If this result is zero, a match has been found, 

and is reported on the teleprinter. Note that if the mask is zero, 

all locations within the limits will be printed. 

5.2.4.2 Effective Address Search, n;E 

ODT enables you to search for words which address a specified loca­

tion. After specifying the search limits (Section 5.2.4), the command 

n;E is typed (where n is the effective address), initiating the search. 

( 

( 

Words which are either an· absolute address (argument n itself), a ( 

relative address offset, or a relative branch to the effective address 

will be printed after their addresses. For example: 

*$M/177400 1-
nnnnnn/OOlOOO 
nnnnnn/00l040 
*1034;E 
001016/001006 
001054/002767 
*1020;E . 
001022/177774 
001030/001020 

* 

1010 
1060 

(initiating search) 
(relative branch) 
(relative branch) 
(initiating a new search) 
(relative address offset} 
(ahso1ute address) 

5-12 

( 



( 

( 

Particular attention should be given to the reported references 

to the effective address because a word may have the specified bit 

pattern of an effective address without actually being so used. ODT 

will report these as well. 

5.2.5 Calculating Offsets, niO 

Relative addressing and branching involve the use of an offset - the 

number of words or bytes forward or backward from the current location 

to the effective address. During the debugging session it may be 

necessary to change a relative address or branch reference by replac­

ing one instruction offset with another. ODT calculates the offsets 

for you in response to its n;O command. 

The command niO causes ODT to print the 16-bit and 8-bit offsets 

from the currently open location to address n. In ODT-ll, the 8-bit 

offset is printed as a 16-bit word. For example: 

*346/000034 414iO 
*/000022 
*20/000046 200iO 
~20/000067 

000044 000022 22 

000156 000067 67 

In the first example, location 346 is opened and the offsets from 

that location to location 414 are calculated and printed. The contents 

of location 346 are then changed to 22 and verified on the next line. 

r The 16-bit offset is printed followed by the 8-bit offset. In the 

example above, 000156 is the 16-bit offset and 000067 is the 8-bit 

offset. 

( 

The 8-bit offset is printed only if the 16-bit offset is even, as 

was the case above. With ODT-ll only, the user must determine whether 

the 8-bit offset is out of the range of 177600 to 000177 (-12810 to 

12710 ), The offset of a relative branch is calculated and modified 

as follows: 

*1034/103421 1034iO 177776 177777 103777 
* 

Note that the modified low-order byte 377 must be combined with the 

5-13 



unmodified high-order byte. Location 1034 was still open after the 

calculation, thus typing 103777 changed its contents; the location 

was then closed. 

5.2.6 ODT's Priority Level, $p 

$p represents a location in ODT that contains the priority level at 

which ODT operates. If $p contains the value 377, ODT will operate 

at the priority level of the processor at the time ODT is entered. 

Otherwise $p may contain a value between 0 and 7 corresponding to the 

fixed priority at which ODT will operate. 

To set ODT to the desired priority level, open $P. ODT will 

print the present contents, which may then be changed: 

*$P/000006 377 

*' 
If $P is not specified, its value will be seven. 

Breakpoints may be set in routines at different priority levels. 

For example, a program running at a low priority level may use a 

device service routine which operates at a higher priority level. If 

a breakpoint occurs from a low priority routine, if ODT operates at 

a low priority, and if an interrupt does oCcur from a high priority 

routine, then the breakpoints in the high priority routine will not 

be executed since they have been removed. 

5.3 ODT-11X 

ODT-11X has all the commands and features of ODT-11 as explained in 

Section 5.2, plus the following. 

5.3.1 Opening, Changing and Closing Locations 

In addition to operating on words, ODT-11X operates on bytes. 

One way to open a byte is to type the address of the byte 

followed by a backs1ash: 

~1001\ 025 ( \ is printed by typing SHIFT and L) 

5-14 

( 

c 

( 

( 



( 

( 

A backs1ash typed alone will reopen the last open byte. If a word 

was previously open, the backs lash will reopen its even byte. 

~1002/000004\004 

The LINE FEED and up-arrow (or circumflex) keys will operate on bytes 

if a byte is open when the command is given. For example: 

*1001\ 025 t 
001002\004 t 
001001\025 
* 

5.3.1.1 Open the Addressed Location, @ 

The symbol @ will optionally modify, close an open word, and USe its 

contents as the address of the location to open next. 

*1006/001024 @ 
001024/000500 
*1006/001024 2100 @ 
002100/177774 

5.3.1.2 Relative Branch Offset, > 

(open location 1024 next) 

(modify to 2100 and open 
location 2100) 

The right angle bracket, >, will optionally modify, close an open 

word, and use its even byte as a relative branch offset to the next 

word opened. 

*1032/000407 301 > 
000636/000010 

(modify to 301 and interpret as 
a relative branch) 

Note that 301 is a negative offset (-77). The offset is doubled be­

fore it is added to the PC; therefore, 1034 + -176 = 636. 

5.3.1.3 Return to Previous Sequence, < 

The left angle bracket, <, will optionally modify, close an open 

location, and open the next location of the previous sequence 

interrupted by a~, @, or > command. Note that ~, @, or > will 

cause a sequence change to the word opened. If a sequence change 

has not occurred, < will simply open the next location as a LINE 

FEED does. The command will operate on both words and bytes. 
5-15 



*1032/000407 301 > 
000636/000010 < 

001034/001040 @ 
001040/000405\ 005 < 
001035 002 < ---
001036 004 

5.3.2 Calculating Offsets, niO 

(> causes a sequence change) 
« causes a return to original 
sequence) 

(@ causes a sequence change) 
« now operates on byte) 
« acts like + ) 

The command niO causes ODT to print the 16-bit and 8-bit offsets from 

the currently open location to address n. The following examples, 

repeated from the ODT-ll section describing this command (see Section 

5.2.5), show only a difference in printout format: 

*346/000034 414;0 000044 022 22 
*/000022 

*1034/103421 1034iO 177776 377 \ 021 377 
'!../103777 

Note that the modified low-order byte 377 must be combined with" the 

unmodified high-order byte. 

5.3.3 Breakpoints 

With ODT-IIX you can, at anyone time, have up to eight breakpoints set, 

numbered 0 through 7. The niB command used in ODT-ll to set the break­

point at address n will set the next available breakpoint in ODT-IIX. 

Specific breakpoints may be set or changed by the nirnB command where m 

is the number of the breakpoint. For example: 

*1020iB 
*1030iB 
*1040iB 
*1032ilB 

* 

(sets breakpoint 0) 
(sets breakpoint 1) 
(sets breakpoint 2) 
(resets breakpoint 1) 

The iB command used in ODT-ll to remove the only breakpoint will remove 

all breakpoints in ODT-IIX. To remove only one of the breakpoints, the 

r 

( 

( 
'-. 

( 

inB command is used, where n is the number of the breakpoint. For example: ( 

5-16 



/ 
~. 

c 

( 

( 

*;2B 

'* 
(removes the second breakpoint) 

The $B/ command will open the location containing the address of 

breakpoint O. The next seven locations contain the addresses of the 

other breakpoints in order, and thus can be opened using the LINE FEED 

key. (The next location is for Single-instruction mode, explained in 

the next section.) Example: 

*$B/001020 -I­
nnnnnn/001032 -I-
nnnnnn/(address internal to ODT) 

In this example, breakpoint 2 is not set. The contents will be an 

address internal to ODT. After the table of breakpoints is the table 

of Proceed command repeat counts for each breakpoint, and for the Sing1e­

instruction mode (see Section 5.3.4). 

nnnnnn/001036 
nnnnnn/nnnnnn 
nnnnnn/OOOOOO 
nnnnnn/OOOOOO 

-I-
-I-
-I-
15 -I-

(address of breakpoint 7) 
(single-instruction address) 
(count for breakpoint 0) 
(count for breakpoint 1) 

It should be noted that a repeat count in a Proceed command refers 

only to the breakpoint that has most recently occurred. Execution of 

other breakpoints encountered is determined by their own repeat counts. 

5.3.4 Single-Instruction Mode 

With this mode you can specify the number of instructions you wish 

executed before suspension of the program run. The Proceed command, 

instead of specifying a repeat count for a breakpoint encounter, specifies 

the number of succeeding instructions to be executed. Note that break­

points are disabled when single-instruction mode is operative. 

5-17 



Commands for single-instruction mode follow: 

inS Enables Single-instruction mode (n can have any 
value and serves only to distinguish this form 
from the form is); breakpoints are disabled. 

niP Proceeds with program run for next n instructions 
before reentering ODT (if n is missing, it is 
assumed to be 1). (Trap instructions and 
associated handlers can affect the Proceed repeat 
count. See Section 5.5.2.) 

is Disables §.ingle-instruction mode 

When the repeat count for Single-instruction mode is exhausted 

and the program suspends execution, ODT prints: 

B8i n 

* 

where n is the address of the next instruction to be executed. The 

$B breakpoint table contains this address following that of break­

point 7. However, unlike the table entries for breakpoints 0-7, the 

B8 entry is not affected by direct modification. 

Similarly, following the repeat count for breakpoint 7, is the 

repeat count for Single-instruction mode. This table entry, however, 

may be directly modified, and thus is an alternative way of setting 

(-

( 

( 

the Single-instruction mode repeat count. In such a case, iP implies ( 

the argument set in the $B repeat count table rather than the argument 1. 

5.4 ERROR DETECTION 

ODT-ll and ODT-llX inform you of two types of errors: illegal or 

unrecognizable command and bad breakpoint entry. 

Neither ODT-ll nor ODT-I1X checks for the legality of an address 

when commanded to open a location for examination or modification. 

Thus, the command 

177774/ 

5-18 

( 



(--

( 

( 

( 

will reference nonexistent memory, thereby causing a trap through the 

vector at location 4. If this vector has not been properly initialized 

(by lOX, or the user program if lOX is not used), unpredictable results 

will occur. 

Similarly, a command such as 

$20/ 

which references an address eight times the value represented by $2, 

may cause ari illegal (nonexistent) memory reference. 

Typing something other than a legal command will cause ODT to 

ignore the command, print 

? 

'* 
and wait for another command. Therefore, to cause ODT to ignore a 

command just typed, type any illegal character (such as 9 or RUBOUT) 

and the command will be treated as an error, i.e., ignored. 

ODT suspends program execution whenever it encounters a breakpoint, 

i.e., a trap to its breakpoint routine. If the breakpoint routine is 

entered and no known breakpoint caused the entry, ODT prints: 

BE001542 
* 

and waits for another command. In the example above, BE001542 denotes 

Bad ~ntry from location 001542. A bad entry may be caused by an 

illegal trace trap instruction, setting the T-bit in the status 

register, or by a jump to the middle of ODT. 

5.5 PROGRAMMING CONSIDERATIONS 

Information in this section is not necessary for the efficient use of 

5-19 



ODT. However, its content does provide a better understanding of 

how. ODT performs some of its functions. 

5.5.1 Functional Organization 

The internal organization of ODT is almost totally modularized into 

independent subroutines. The internal structure consists of three 

major functions: command decoding, command execution, and various 

utility routines. 

The command decoder interprets the individual commands, checks 

for command errors, saves input parameters for use in command execution, 

and sends control to the appropriate command execution routine. 

The command execution routines take parameters saved by the 

command decoder and use the utility routines to execute the specified 

command. Command execution routines exit either to the object program 

or back to the command decoder. 

The utility routines are common routines such as SAVE-RESTORE 

and I/O. -They are used by both the command decoder and the command 

executers. 

Communication and data flow are illustrated in Figure 5-1. 

5.5.2 Breakpoints 

The function of a breakpoint is to give control to ODT whenever the 

user program tries to execute the instruction at the selected address. 

Upon encountering a breakpoint, the user can utilize all of the ODT 

commands to examine and modify his program. 

When a breakpoint is executed, ODT-ll(X) removes (all) the break­

point instruction(s} from the user's code so that the locations may 

be examined and/or altered. ODT then types a message to the user of 

the form Bn(Bmin for ODT-llX) where n is the breakpoint address 

(and m is the breakpoint number). The breakpoints are automatically 

restored when execution is resumed. 

A major restriction in the use of breakpoints is that the word 

5-20 

(-~ ! 

( 

( 

( 

t 

( 



( 

c 

c 

USER 

PROGRAM 

I 
I 

---------------------~ 

--------+----------

,---4---

t 
I 
I 

UTILITY ~ 
L.-_R_OU_T_!_N_E_S_... OGUUT _ (I/O,ETC.) 

USER ENVIRONMENT OOT 

LEGEND 

Flow of conlrol --.­
Flow of doto 

Figure 5-1 Communication and Data Flow 

5-21 

1 
INTERNAL 
TABLE MANI­
PULATION 
COMMANDS 

ODT 
INTERNAL 
TABLES 

1\-0065 



where a breakpoint has been set must not be referenced by the program 

in any way since ODT has altered the word. Also, no breakpoint should 

be set at the location of any instruction that clears the T-bit. For 

example; 

MOV ,240,177776 ;SET PRIORITY TO LEVEL 5. 

A breakpoint occurs when a trace trap instruction (placed in the user 

program by ODT) is executed. When a breakpoint occurs, the following 

steps are taken: 

1. Set processor priority to seven (automatically set by 
trap instruction). 

2. 

3. 
4 

5. 

Save registers and set up stack. 

If internal T-bit trap flag is set, go to step 13. 

Remove breakpoint(s). 

Reset processor priority to ODT's priority or user's 
priority. 

6. Make sure a breakpoint or, Single-instruction mode caused 
the interrupt. 

7. If the breakpoint did not cause the interrupt, go to 
step 15. 

8. Decrement repeat count. 

9. Go to step 18 if non-zero, otherwise reset count to one. 

10. Save Teletype status. 

11. Type message to user about the breakpoint or Single-
instruction mode interrupt. 

12. Go to command decoder. 

13. Clear T-bit in stack and internal T-bit flag. 

14. Jump to the "GO" processor. 

15. Save Teletype status. 

16. Type "aE,j (Bad Entry) followed by the address. 

17. Clear the T-bit, if·set, in the user status and proceed 
to the command decoder. 

18. Go to the "proceed" processor, bypassing the TTY restore 
routine. 

( 

( 

Note that steps 1-5 inclusive take approximately 100 microseconds 

during which time interrupts are not permitted to occur (ODT is running ( 

at level 7). 

5-22 



r 

( 

( 

/ 

( 

When a proceed (iP) command is given, the following occurs: 

1. The proceed is checked for legality. 

2. The processor priority is set to seven. 

3. The T-bit flags (internal and user status) are set. 

4. The user registers, status, and Program Counter are 
restored. 

5. Control is returned to the user. 

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 
of the breakpoint sequence are executed, breakpoints 
are restored, and program execution resumes normally. 

When a breakpoint is placed on an lOT, EMT, TRAP, or any instruc­

tion causing a trap, the following occurs: 

L 

2. 

3. 

4. 

5. 

6. 

When the breakpoint occurs as described above, ODT 
is entered. 

When iP is typed, the T-bit is set and the lOT, EMT, TRAP, 
or other trapping instruction is executed. 

This causes the current PC and status (with the T ... bit 
included) to be pushed on the stack. 

The new PC and status (no T-bit set) are obtained from 
the respective trap vector. 
The whole trap service routine is executed without any 
breakpoints. 

When an B.TI is executed, the saved PC and PS (including 
the T-bit) are restored. The instruction following the 
trap-causing instruction is executed. If this instruc­
tion is not another trap-causing instruction, the T-bit 
trap occurs, causing the breakpoints to be reinserted in 
the user program, or the Single-instruction mode repeat 
count to be decremented. If the following instruction is 
a trap-causing instruction, this sequence is repeated, 
starting at step 3. . 

NOTE 

Exit from the trap handler must be via the RTI in­
struction. Otherwise, the T-bit will be lost. ODT 
will not gain control again since the breakpoints 
have not been reinserted yet. 

In ODT-ll, the iP command is illegal if a breakpoint has not 

occurred (ODT will respond with ?). In ODT--lIX, iP is legal after 

any trace trap entry. 



WARNING 

Since ODT-ll ignores all semicolons, typing the 
ODT-llX form of breakpoint command number to 
ODT-ll, specifying a breakpoint number n, causes 
the following error: 

100iB (sets the breakpoint at location 100) 
100iOB (sets the breakpoint at location 1000) 
100i4B (sets the breakpoint at location 1004) 

The internal breakpoint status words for ODT-ll have the following 

format: 

1. The first word contains the breakpoint address. If 
this location points to a location within ODT, it is 
assumed no breakpoint is set for the cell (specifically, 
ODT has set a dummy breakpoint within itself) . 

2. The next word contains the breakpoint repeat count. 

For ODT-llX (with eight breakpoints) the formats are: 

1. The first eight words contain the breakpoint addresses 
for breakpoints 0-7. (The ninth word contains the 
address of the next instruction to be executed in 
Single-instruction mode.) 

2. The next eight words contain the respective repeat 
counts. (The following word contains the repeat count 
for Single-instruction mode.) 

These words may be changed at will by the user, either by using the 

breakpoint commands or by direct manipulation with $B. 

When program runaway occurs (that is, when the program is no 

longer under ODT control, perhaps executing an unexpected part of 

the program where a breakpoint has not been placed) ODT may be 

given control by pressing the HALT key to stop the machine, and 

restarting ODT (see Section 5.6.2). ODT will print *, indicating 

that it is ready to accept a command. 

If the program being debugged uses the Teletype for input or 

output, the program may interact with ODT to cause an error since 

ODT uses the Teletype as well. This interactive error will not 

occur when the program being debugged is run without ODT. 

5-24 

( 

( 

( 



( 

( 

( 

1. If the Teletype printer interrupt is enabled upon entry 
to the ODT break routine, and no output interrupt is 
pending when ODT is entered, ODT will generate an unex­
pected interrupt when returning control to the program. 

2. If the interrupt of the Teletype reader (the keyboard) 
is enabled upon entry to the ODT break routine, and the 
program is expecting to receive an interrupt to input a 
character, both the expected interrupt and the character 
will be lost. 

3. If the Teletype reader (keyboard) has just read a char­
acter into the reader data buffer when the ODT break 
routine is entered, the expected character in the 
reader data buffer will be lost. 

5.5.3 Search 

The word search allows the user to search for bit patterns in specified 

sections of memory. Using the $M/ command, the user specifies a mask, 

a lower search limit ($M+2), and an upper search limit ($M+4). The 

search object is specified in the search command itself. 

The word search compares selected bits (where ones appear in the 

mask) in the word and search object. If all of the selected bits are 

equal, the unmasked word is printed. 

The search algorithm is: 

1. Fetch a word at the current address. 

2. XOR (exclusive OR) the word and search object. 

3. AND the result of step 2 with the mask. 

4. If the result of step 3 is zero, type the address of 
the unmasked word and its contents. Otherwise, proceed 
to step 5. 

5. Add two to the current address. If the current address 
is greater than the upper limit, type * and return to the 
command decoder, otherwise go to step 1. 

Note that if the mask is zero, ODT will print every word between 

t~e limits, since a match occurs every time (i.e., the result of step 

3 is always zero). 

In the effective address search, ODT interprets every word in the 

5-25 



search range as an instruction which is interrogated for a possible 

direct relationship to the search object. 

The algorithm for the effective address search is (where (x) 

denotes contents of X, and K denotes the search object) : 

1. Fetch a word at the current addressX. 

2. If (X) =K [direct reference], print contents and go to 
step 5. 

3. If (X)+X+2=K [indexed by PC], print contents and go to 
step 5. 

4. If (X) is a relative branch to K, print contents. 

5. Add two to the current address. If the current 
address is greater than the upper limit, perform a 
carriage return/line feed and return to the command 
decoder; otherwise, go to step 1. 

5.5.4 Teletype Interrupt 

Upon entering the TTY SAVE routine, the following occurs: 

1. Save the LSR status register (TKS). 

2. Clear interrupt enable and maintenance bits in the TKS. 

3. Save the TTY status register (TPS). 

4. Clear interrupt enable and maintenance bits in the TPS. 

To restore the TTY: 

1. Wait for completion of any I/O from ODT. 

2. Restore the TKS. 

3. Restore the TPS. 

~lARNINGS 

If the TTY printer interrupt is enabled upon entry to 
the ODT break routine, the following may occur: 

1. If no output interrupt is pending when ODT is 
entered, an additional interrupt will always 
occur when ODT returns control to the user. 

2. If an output interrupt is pending upon entry, 
the expected interrupt will occur when the user 
regains control. 

5-26 

(--' 

( 

( 

c 

( 



( 

( 

( 

WARNINGS (cont.) 

If the TTY reader (keyboard) is busy or done, the expected 
character in the reader data buffer will be lost. 

If the TTY reader (keyboard) interrupt is enabled upon 
entry to the ODT break routine, and a character is pend­
ing, the interrupt (as well as the character) will be 
lost. 

5.6 OPERATING PROCEDURES 

This section describes assembling and loading procedures for ODT, 

restarting and reentering procedures, error recovery, and setting 

the priority level of ODT. 

5.6.1 Loading Procedures 

ODT-ll and ODT-llX are supplied on source and binary tapes. Source 

tapes are assembled as explained in Section 5.6.3. Binary tapes of 

either version are loaded into core memory using the Absolute Loader, 

as explained in Section 6.2.2. When using ODT's binary tapes, the 

object program should be loaded prior to loading ODT, since ODT is 

started when loaded. 

ODT-ll is loaded into core starting at location 13026, and requires 

about 53310 locations of core. ODT-llX is loaded into core starting 

at location 12054, and requires about 800 words of core. 

5.6.2 Starting and Restartin2 

After loading ODT into core, it is automatically started by the 

Absolute Loader. ODT indicates its readiness to accept input by 

printing an * 

When ODT is started at its start address, the SP register is 

set to an ODT internal stack, registers RO-R5 are left untouched, 

and the trace trap vector is initialized. If ODT is started after 

breakpoints have been set in a program, ODT will forget about the 

breakpoints and will leave the program modified, i.e., the break-

( pOint instructions will be left in the pr()gram. 

5-27 



There are two ways of restarting ODT: 

1. Restart at start address+2 

2. Reenter at stait address+4 

To restart, key in the start address+2 (13030 for ODT-ll or 

12056 for ODT-IIX), press LOAD ADDRess and then START. A restart 

will save the general registers, remove all the breakpoint instruc­

tions from the user program and then forget all breakpoints, i.e., 

simulate the iB command. 

To reenter, key in the load address+4 (13032 for ODT-ll or 

12060 for ODT-IIX), press LOAD'ADDRess and then START. A reenter 

will save the general registers, remove the breakpoint instructions 

from the user program, and ODT will type the BE (Bad Entry) error 

message. ODT will remember which breakpoints were set and will 

r~set them on the next iG command (iP is illegal after a Bad Entry). 

5.6.3 Assembling ODT 

If the program being debugged requires storage where the version of 

ODT being used is normally loaded, it is necessary to reassemble ODT 

after changing the starting location. 

The source tape of ODT is in three segments, each separated from 

the next by blank tape. The first segment contains: 

.=n (standard location setting statement) 

.EOT 

where n=13026 for ODT-ll or n=12054 for ODT-IIX. This statement 

tells the Assembler to start assembling at address n. To relocate 

ODT to another starting address, substitute for segment one a source 

tape consisting of: 

.=n en is the new load address for ODT) 

5-28 

c--

( 

( 

( 

( 



C-- The .EOT statement tells the Assembler that this is the end of the 

segment but not the end of the program -- the Assembler will stop and 

wait for another tape to be placed in the reader. 

The second segment of tape contains the ODT source program. This 

segment is also terminated with .EOT. 

The third segment of the tape consists of the statement: 

.END O.ODT 

(. where .END means "end of program" and O.ODT represents the starting 

address of the program (see Section 6.2.3). 

( 

( 

When relocating ODT, the first segment of the source tape must 

be changed to reflect the desired load address. The third segment 

may be changed to .ENO without a start' address. The latter will caus,e 

the Loader to halt upon completion of loading. 

The 'segmentation allows the following assembly forms: 

1. Assemble alone but at a new address. A new segment one 
must be generated and assembled with segments two and three. 

2. Assemble immediately after the user's program to be de­
bugged. Assemble the tape of the user,' s program (ending 
with .EOT) followed by ODT's segment two and either segment 
three or a new segment three. 

3. Assemble inside the program to be debugged. Assemble the 
first part of the user program (ending with .EOT) followed 
by ODT's second segment followed by the second part of the 
user program. 

When setting locations before assembling, it must be noted that 

immediately preceding ODT a minimum internal stack of 40S bytes is 

required for the ODT-ll and 116 a bytes is required for ODT-IIX. 

Additional room must be allocated for subroutine calls and possible 

interrupts while ODT is in control. Twelve bytes maximum will be used 

by ODT proper for subroutine calls and interrupts, giving a minimum 

safe stack space of 528 bytes for ODT-ll or130 S bytes for ODT-IIX. 

5-29 



Once a new binary tape of ODT has been assembled, load it using (-~-
the Absolute Loader as explained in Section 6.2.2. Normally, the 

program to be debugged is loaded beforeODT, since ODT will automatically 

be in control immediately after loading, unless the third segment of 

ODT's source tape was alt~red before assembly. As soon as the tape is 

read in, ODT will print an * on the Teletype to indicate that it is· 

ready for a command. 

5-30 

(~ 

( 

( 

( 



6.1 
6.1.1 
6.1. 2 
6.1. 3 

6.2 
6.2.1 
6.2.2 
6.2.3 

6.3 
6.3.1 
6.3.2 
6.3.3 

CHAPTER 6 

LOADING AND DUMPING CORE MEMORY 

THE BOOTSTRAP LOADER 6-2 
Loading the Loader Into Core 6-3 
Loading Bootstrap Tapes 6-5 
Bootstrap Loader Operation 6-6 

THE ABSOLUTE LOADER 6-8 
Loading the Loader Into Core 6-8 
Loading Absolute Tapes 6-8 
Absolute Loader Operation 6-10 

CORE MEMORY DUMPS 6-12 
Operating Procedures 6-13 
Output Formats 6-14 
Storage Maps 6-14 

6-i 





CHAPTER 6 

Loading and Dumping Core Memory 

When your PDP-II computer is first received its core memory is completely 

demagnetized -- it "knows" absolutely nothing, not even how to receive 

paper tape input. However, the computer can accept data when toggled 

directly into core using the console switches. Since the Bootstrap Loader 

program is the very first program to be loaded, it must be toggled into 

core. 

The Bootstrap Loader (see Section 6.1) is a program which instructs 

the computer to accept and store in core data which is punched on paper 

tape in bootstrap format. The Bootstrap Loader is used to load very short 

paper tape programs of 1628 16-bit words or less -- primarily the Absolute 

Loader and Memory Dump Programs. Programs longer than 162 8 16-bit words 

must be assembled into absolute binary format using the PAL-IIA Assembler 

and loaded into core using the Absolute Loader. 

The Absolute Loader (see Section 6.2) is a system program which enables 

you to load into any available core memory bank data punched on paper tape 

in absolute binary format. It is used primarily to load the paper tape sys­

tem softw·are (excluding certain subprograms) and object programs assembled 

with PAL-llA. 

The loader programs are loaded into the upper-most area of available 

core so that they will be available for use with system and user programs. 

When writing your programs be aware·that they should not use the locations 

used by the loaders without restoring their contents; otherwise, the load­

ers will have to be reloaded since they would have been altered by your 

object program. 

Core memory dump programs {see Section 6.3) are used to print or punch 

the contents of specified areas of core. For example,. when developing or 

debugging user programs it is often necessary .to get a copy of the program 

or portions of core. There are two dump programs supplied in the paper 

tape software system: DUMPTT, which prints or punches the octal representa­

tion of all or specified portions of core, and DUMPAB, which punches all 

or specified portions of core in absolute binary format suitable for load­

ing with the Absolute Loader •. 
6-1 



The Bootstrap Loader should be loaded (toggled) into the highest core mem­
ory bank. The locations and corresponding instructions of the Bootstrap 
Loader are listed and explained below. 

~Qc:atiQn 

xx7744 
xx7746 
xx7750 
xx7752 
xx7754 
xx7756 
xx7760 
xx7762 
xX7764 
xx7166 
xx7770 
xx7772 
xx1774 
xx7776 

Instruct,J"on 

016701 
000026 
012702 
000352 
005211 
105711 
100376 
116162 
000002 
xx7400 
005267 
177756 
000765 
yyyyyy 

Figure 6-1. Bootstrap Loader Instructions 

( / 

In Figure 6-1, Xx represents the highest available memory bank. For (, 
example, the first location of the Load.er would be one of the following, 
depend.ing on memory size, and xx in all subsequent locations would be the 
same as the first. 

LOca:tion 

017744 
037744 
057744 
077744 
117744 
137744 
157744 

o 
1 

2 

3 

4 

5 

6 

Mem9l:'y Size 

41< 

8K 

12K 

16K 
20K 

241< 
28K 

:Note also in Figure 6-1 that the contents of location xx7766 should reflect 
the appropriate memory bank in the same manner as the location. 

The contents of lOcation xx7776 (yyyyyy in the tnstruction column of 
Figure 6~1) should contain the device status register address of the paper 

6-2 

C,J 



(-

( 

( 

( 

tape reader to be used when loading the bootstrap formatted tapes. Either 

paper tape reader may be used, and each is specified as follows: 

Teletype Paper Tape Reader 

High-Speed Paper Tape Reader 

6.1.1 Loading the Loader Into Core 

177560 

177550 

With the computer initialized for use as described in Chapter 2, toggle in 

the Bootstrap Loader as explained below. 

1. Set xx7744 in the Switch Register (SR) and press LOAD 
ADDRess (xx7744 will be displayed in the ADDRESS REGISTER. 

2. Set the first instruction, 016701, in the SR and lift 
DEPosit (016701 will be displayed in the DATA register). 

NOTE 

When DEPositing data into consecutive words, 
the DEPosit automatically increments the AD­
DRESS REGISTER to the next word. 

3. Set the next instruction, 000026, in the SR and lift 
DEPosit (000026 will be displayed in the DATA register). 

4. Set the next instruction in the SR, press DEPosit, and 
continue depositing subsequent instructions (ensure 
that location xx7766 reflects the proper memory bank) 
until after 000765 has been deposited in location xx7774. 

5. Deposit the desired device status register address in 
location xx7776, the last location of the Bootstrap 
Loader. 

It is good progranuning practice to verify tha.t all instructions al;.e stored 

correctly. This is done by proceeding at step 6 below. 

6. Set xx7744 in the SR and press LOAD ADDRess. 

7. Press EXAMine (the octal instruction in location xx7744 
will be displayed in the DATA register so that it can 
be compared to the correct instruction, 016701. If 
the instruction is correct, proceed to step 8, otherwise 
go to step 10. 

8. Press EXAMine (the instruction of the location displayed 
in the ADDRESS REGISTER will be displayed in the DATA 
register; compare the DATA register contents to the in­
struction for the displayed location. 

6-3 



9. Repeat step 8 until all instructions have been verified 
or go to step 10 whenever the correct instruction is not 
displayed. 

Whenever an incorrect instruction is displayed, it. can be 
corrected by performing steps 10 and 11. 

10. With the desired location displayed in the ADDRESS REGISTER, 
set the correct instruction in the SR and lift DEPosit (the 
contents of the SR will be deposited in the displayed loca-
tion) . 

11. Press EXAMine to ensure that the instruction was correctly 
stored (it will be displayed in the DATA register) . 

12. Proceed at step 9 until all instructions have been 
verified. 

The Bootstrap Loader is now loaded into core. The procedures 
above are illustrated in the flowchart of Figure 6-2. 

Set 

Load Verify 

Set SR to 016701 Press EXAM 

Lift DEP 

Set SR 

Figure 6-2. Loading and Verifying the 
Bootstrap Loader 

6-4 

c-

( 

( 

( 



6.1.2 Loading Bootstrap Tapes 

Any paper tape punched in bootstrap format is referred to as a bootstrap 

r-- tape(see Section 6.l.3} and is loaded into core using the Bootstrap Loader. 

( 

( 

( 

Bootstrap tapes begin with about two feet of special bootstrap leader code 

(ASCII code 351, not blank leader tape as is required by the Absolute Loader). 

Wi th the Bootstrap Loader in core, the bootstrap tape will be loaded into 

core starting anywhere between location xx7400 and location xx7743, i.e., 

162 8 words. The paper tape input device used is that which is specified in 

location xx7776 (see Section 6.l.l.). 

Bootstrap tapes qre loaded into core as explained below. 

1. Set the ENABLE/HALT switch to HALT. 

2. Place the bootstrap ta.pe in the specified reader 
with the special bootstrap leader code over the 
reader sensors (under the reader station). 

3. Set the SR to xx7744 (the starting address of the 
Bootstrap Loader) and press LOAD ADDRess. 

4. Set the ENABLE/HALT switch to ENABLE. 

5. Press START. The bootstrap tape will pass through 
the reader as data is being loaded into core. 

6. The bootstrap tape stops after the last frame of 
data (see Figure 6-5) has been read into core. 
The program on the bootstrap is now in core. 

The procedures above are illustrated in the flowchart of Figure 6-3 . 

.,... - - - - -I See Figure 6-2 

Figure 6-3. Loading Bootstrap Tapes Into Core 

6-5 



Should the bootstrap tape not read in immediately after depressing the 

START switch( it would be due to anyone of the following: 

1. Bootstrap Loader not correctly loaded. 

2. Using the wrong input device. 

3. Code 351 not directly over the reader sensors. 

4. Bootstrap tape not properly positioned in reader. 

6.1.3 Bootstrap Loader Operation 

The Bootstrap Loader source program is shown below. The starting address 

in the e~ample denotes that the Loader is to be loaded into memory bank zero 

(a 4K system) . 

'~}1~ 
017744 

017750 

017754 
017756 

017760 
017762 

017770 

017774 
017776 

000001 
000002 
017400 

017744 
016701 START: 
000026 
012702 LOOP: 
000352 
005211 ENABLE: 
105711 WAIT: 

100376 
116162 
000002 
017400 
005267 
177756 
000765 BRNCH: 
000000 DEVICE: 

Rl=%l iUSED FOR THE DEVICE ADDRESS 
" R2=%2 iUSED FOR THE LOAD ADDRESS DISPLACEMENT 

LOAD=17400 iDATA MAY BE LOADED NO LOWER 
iTHAN THIS 

.=17744 iSTART ADDRESS OF THE BOOTSTRAP LOADER 
MOV DEVICE,Rl iPICK UP DEVICE ADDRESS, 

iPLACE IN Rl 
MOV #.-LOAD+2,R2 iPICK UP ADDRESS 

INC @Rl 
TSTB @Rl 

iDISPLACEMENT 
iENABLE THE PAPER TAPE 
iREADER 
iWAIT UNTIL FRAME 

BPL WAIT iIS AVAILABLE 
MOVB 2 (Rl) ,LOAD (R2) iSTORE FRAME READ 

iFROM TAPE IN MEMORY 

INC LOOP+2 iINCREMENTLOAD ADDRESS 
iDISPLACEMENT 

BR LOOP i GO BACK AND READ MORE DATA 
o iADDRESS OF INPUT DEVICE 

Figure 6-4. The Bootstrap Loader Program 

The program above is a brief e~ample of the PAL-llA Assembly Language 

which is explained in Chapter 3. 

\Bootstrap tapes are coded in the following format. 

351 

351 
xxx 
AM 

Special bootstrap leader code (at least two feet 
in length) 

Load offset (see text below) 

6-6 

( 

( 

( 

( 



( 

f 

( 

( 

BBB 
CCC 

ZZZ 
301 
035 
026 
000 
302 
025 
373 
yyy 

Program to be loaded (up to 1628 words or 3448 
frames) 

Boot overlay code, as shown. 

Jump offset (see text below) 

Figure 6-5. Bootstrap Tape Format 

The Bootstrap Loader starts by loading the device status register ad­

dress into Rl and 3528 into R2. The next instruction indicates a read 

operation in the device and the next two instructions form a loop to wait 

for the read operation to be completed. When data is encountered it is 

transferred to a location determined by the sum of the index word (xx7400) 

and the contents of R2. 

Because R2 is initially 3528 , the first word is moved to location 

xx7752, and it becomes the immediate data to set R2 in the neXt execution 

of the loop. This immediate data is then incremented by one and the pro~ 

gram branches to the beginning of the loop. 

The leader code, plus the increment, is equal in value to the data 

placed in R2 during the initiali~ation; therefore, leader code has no ef­

fect on the lOader program. Each time leader code is read the processor 

executes the same loop and the program remains unmodified. The first code 

other than leader code, however, replaces the data to be loaded into R2 

with some other value which acts as a pointer to the program starting lOca~ 

tion (loading address). Subsequent bytes are read not into the location 

of the immediate data but into consecutive core locations. The program 

will thus be read in byte by byte. The INC instruction which operates all. 

the data for R2 puts data bytes in sequential locations, and requires that 

the value of the leader code and the offset be one less than the value de­
sired in R2. 

The boot overlay code will overlay the first two instructions of the 

Loader, because the last data byte is placed in the core location immedi-



ately preceding the Loader. The first instruction is unchanged by the over-

lay, but the second instruction is changed to place the next byte read, jump (: 

offset, into the lower byte of the branch instruction. By changing the off-

set in this branch instruction, the Loader can branch to the start of the 

loaded program or to any point within the program. 

The Bootstrap Loader is self-modifying, and the program loaded by the 

Loader restores the Loader to its original condition by restoring the con­

tents of locations xx7752 and xx7774 to 000352 and 000765 respectively. 

6.2 THE ABSOLUTE LOADER 

The Absolute Loader is a system program which, when in core, enables you to 

load into any core memory bank data punched on paper tape in absolute binary ( 

format. It is used primarily to load the paper tape system software (exclud­

ing certain subprograms) and your object programs assembled with PAL-IIA. 

~he major features of the Absolute Loader include: 

1. Testing of the checksum on the input tape to assure complete, 
accurate loads. 

2. Starting the loaded program upon completion of loading with­
out additional user action, as specified by the .END in the 
program just loaded. 

3. Specifying the load bias of position independent programs 
at load-time rather than at assembly time, by using the de­
sired Loader switch register option. 

6.2.1 Loading the Loader Into Core 

The Absolute Loader is supplied on punched paper tape in bootstrap format. 

Therefore, the Bootstrap Loader is used to load the Absolute Loader into 

core. It occupies locations xx7474 through xx7743, and its starting address 

is xx7500. The Absolute Loader program is 72 10 words long, and is loaded 

adjacent to the Bootstrap LOader as explained in Section 6.1.2. 

6.2.2 Loading Absolute Tapes 

Any paper tape punched in absolute binary format is referred to as an abso­

lute tape,and is loaded into core using the Absolute Loader. When using 

the Absolute Loader, there are two types of load available: normal and 

reloGated. 

6-8 

( 

( 



( 

( 
\,. 

A normal load occurs when the data is loaded and placed in core according 

to the load addresses on the object tape. It is specified by setting bit 0 

of the Switch Register to zero immediately before starting the load. 

There are two types of relocated loads. 

a. Loading to continue from where the loader left off 
after the previous load .-

b. 

This is used, for example, when the object program 
being loaded is contained on more than one tape. 
It is specified by setting the Switch Register to 
000001 immediately before starting the load. 

Loading into a specific area of core -

This is normally used when loading position inde­
pendent programs. A position independent program 
is one which may be loaded and run anywhere in 
available core. The program is written. using the 
position independent instruction format (see Chap­
ter 9). This type of load is specified by setting 
the Switch Register to the .load bias and adding 
1 to it (i.e., setting bit 0 to 1). 

Optional switch register settings for the three types of loads are 

listed below. 

Switch Register 
Type of Load Bits 1-14 Bit 0 

Normal (ignored} 0 

Relocated - continue 0 1 
loading where left off 

Relocated - load in nnnnn 1 
specified area of core (specified 

address) 

The absolute tape may be loaded using either of the paper tape readers. 

The desired reader is specified in the last word of available core memory 

(xx7776), the input device status word, as explained in Section 6.1. The 

input device status word may be changed at any time prior to loading the 

absolute tape. 

With the Absolute Loader in core as explained in Section 6.1.2, abso­

lute tapes are loaded as explained below. 

6-9 



1. Set the ENABLE/HALT switch to HALT. 

To use an input device different from that used when 
loading the Absolute Loader, change the address of the 
device status word (in location xx7776) to reflect the 
desired device, i.e., 177560 for the Teletype reader 
or 177550 for the high-speed reader. 

2. Set the SR to xx7500 and press LOAD ADDR. 

3. Set the SR to reflect the desired type of load (Figure 
E-3 in Appendix E) . 

4. Place the absolute tape in the proper reader with blank 
leader tape directly over the reader sensors. 

5. Set ENABLE/HALT to ENABLE. 

6. Press START. The absolute tape will begin passing through 
the reader station as data is being loaded into core. . 

If the absolute tape does not begin passing through the reader station, 

the Absolute Loader is not in core correctly. Therefore, reload the Loader 

and start over at step 1 above. If it halts in the middle of the tape, a 
checksum error occurred in the last block of data read in. 

Normally, the absolute tape will stop passing through the reader sta­

tion when it encounters the transfer address as generated by the statement, 

.END, denoting the end of a program. If the system halts after loading, 

check that the low byte of the DATA register is zero. If so, the tape is 

correctly loaded. If not zero, a checksum error (explained later) has oc­

curred in the block of data just loaded, indicating that some data was not 

correctly loaded. Thus, the tape should be reloaded starting at step 1 

above. 

When loading a continuous relocated load, subsequent blocks of data 

are loaded by placing the next tape in the appropriate reader and pressing 

the CONTinue switch. 

The Absolute Loader may be restarted at any time by starting at step 1 

above. 

6.2.3 Absolute Loader Operation 

(\ 
\ 

( 

( 

The Loader uses the eight general registers (RO-R7) and does not preserve ( 

or restore their previous contents. Therefore, caution should be taken to 
! 

restore or load these registers when necessary after using the Loader. 

6 ... 10 



A block of data punched on paper tape in absolute binary format has 

C-- the following format. 

k 

( 

( 

( 

FRAME 1 001 
2 000 
3 xxx 
4 xxx 
5 yyy 
6 yyy 

zzz 

start frame 
null frame 
byte count (low 8 bits) 
byte count (high 8 bits) 
load address (low 8 bits) 
load address (high 8 bits) 
data is 

placed 
here 

last frame contains a block checksum 

A program on paper tape may consist of one or more blocks of data. 

Each block having a byte count (frames 3 and 4) greater than six will 

cause subsequent data to be loaded into core (starting at the address speci­

fied in frames 5 and 6 under a normal load). The byte count is a positive 

integer containing the total number of bytes in the block, excluding the 

checksum. When the byte count of a block is equal to six the specified load 

address is checked to see whether the address is to an even or to an odd 

location. If even, the Loader will transfer control to the address speci­

fied. Thus the loaded program will be run upon completion of loading. If 

odd, the loader halts. 

The transfer address (TRA) may be explicitly specified in the SOUrce 

program by placing the desired address in the operand field following the 

.END statement. For example, 

.END AI,.PHA 

specifies the symbolic location ALPHA as the TRA, and 

. END 

causes the Loader to halt. With 

.END nnnnnn 

the Loader will also halt if the address (nnnnnn) is odd. 

The checksum is displayed in the low byte of the OATA register of the 

6-11 



computer console. Upon completion of a load, the low byte of the DATA 

register should be all zeros (unlit). Otherwise, a checksum error has 

occurred, indicating that the load was not correct. The checksum is the 

low-order byte of the negation of the sum of all the previous bytes in the 

block. When all bytes of a block, including the checksum, are added to­

gether the low-order byte of the result should be zero. If not, some 

data was lost during the load or erroneous data was picked up; the load 

was incorrect. When a checksum error is displayed, the entire program should 

be reloaded, as explained in the previous section. The loaders occupy core 

memory as illustrated below. 

xx7776 I/O Device Word 

Bootstrap Loader 

xx7744 

Absolute Loader 

xx7500 Loader Stack 

xx7474 

User and 
System 

Programs 

6. 3 CORE MEMORY DUMPS 

A core memory dump program is a system program which enables you to dump 

(print or punch) the contents of all or any specified portion of core memory 

onto the Teletype printer and/or punch, line printer or high-speed punch. 

There are two dump programs available in the Paper Tape Software System: 

1. DUMPTT, which dumps the octal representation of the 
contents of specified portions of core onto the tele­
printer, low-speed punch, high-speed punch, or line 
printer. 

2. DUMPAB, which dumps the absolute binary code of the 
contents of specified portions of core onto the low­
speed punch or high-speed punch. 

Both dump programs are supplied on punched paper tape in bootstrap and abso­

lute binary formats. The bootstrap tapes are loaded over the Absolute 

6-12 

( 

( 

( 

( 



( 

( 

( 

Loader as explained in Section 6.1.3, and are used when it would be un­

desirable to alter the contents of user storage (below the Absolute 

Loader). The absolute binary tapes are position independent and may be 

loaded and run anywhere in core as explained in Section 6.2.2. 

DUMPTT and DUMPAB are very similar in function, and differ prlmarl~y 

in the type of output they produce. 

6.3.1 Operating Procedures 

Neither dump program will punch leader or trailer tape, but DUMPAB will 

always punch ten blank frames of tape at the start of each block of data 

dumped. 

Operating procedures for both dump programs follow: 

1. Select the dump program desired and place it in the 
reader specified by location xx7776 (see Section 6.1). 

2. If a bootstrap tape is selected, load it using the 
Bootstrap Loader, Section 6.1.2. When the computer 
halts go to ?tep 4. 

3. If an absolute binary tape is selected, load it using 
the Absolute Loader (Section 6.2.2), relocating as 
desired. 

Place the proper start address in the Switch Register, 
press LOAD ADDRess and START. (The start addresses 
are shown in Section 6.3.3). 

4. When the computer halts, enter the address of the 
desired output device status register in the Switch 
Register and press CONTinue (low-speed punch and tele­
printer=177564; high-speed punch = 177554; line 
printer = 177514). 

5. When the computer halts, enter in the Switch 
Register the address of the first byte to be dumped 
and press CONTinue. This address must be even when 
using DUMPTT. 

6. When the computer halts again enter in the Switch 
Register the address of the last byte to be dumped 
and press CONTinue. When using the low-speed punch, 
set the punch to ON before pressing CONTinue. 

7. Dumping will now proceed on the selected output device. 

8. When dumping is complete, the computer will halt. 

If further dumping is desired, proceed to step 5. It is not necessary 

6-13 



to respecify the output device address except when changing to another 

output device. In such a case, proceed to the second paragraph of step 3 

to restart. 

If DUMPAB is being used, a transfer block must be generated as de­

scribed below. If a tape read by the Absolute Loader does not have a 

transfer block, the loader will wait in an input loop. In such a case, 

the program may be manually initiated. However, this practice is not 

recommended, as there is no guarantee that load errors will not occur 

when the end of the tape is read. 

The transfer block is generated by performing step 5 with the trans­

fer address in the Switch Register, and step 6 with the transfer address 

minus I in the Switch Register. If the tape is not to be self-starting, 

an odd-numbered address must be specified in step 5 (000001, for example). 

The dump programs use all eight general registers and do not restore 

their original contents. Therefore, after a dump the general registers 

should be loaded as necessary prior to their use by subsequent programs. 

6.3.2 Output Formats 

The output from DUMPTT is in octal in the. following format: 

xxxxxx>yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy 

( 

( 

where xxxxxx is the address of the first location printed or punched, and ( 

yyyyyy are words of data, the first of which starts at location xxxxxx. 

This is the format for every line of output. There will be no more than 

eight words of data per line, but there will be as many lines as are needed 

to complete the dump. 

The output from DUMPAB is in absolute binary, as explained in Section 

6.2.3. 

6.3.3 Storage Maps 

The DUMPTT program is 87 words long. When used in absolute format the 

storage map is: ( 

6-14 



,-. 

( 

( 

( 

xx7776 

xx7744 

xx7500 
xx7474 

xxxxxx+256 

xxxxxx 

Absolute Loader 

Loader Stack Space 

DUMPTT 

Two-word Stack Space 

xxxxxx = desired load address = start address 

When used in bootstrap format the storage map is: 

xx7776 

xx7744 

start 
address=xx7440 

xx7434 

Bootstrap Loader 

DUMPTT 

Two;"'word Stack Space 

6 ... 15 



The DUMPAB program is 6510 words long. When used in absolute format 

the storage map is: 

xx7776 

xx7744 

xx7500 
xx7474 

xxxxxx+202 

xxxxxx 

Bootstrap Loader 

Absolute Loader 

Loader Stack Space 

DUMPAB 

Two-word Stack Space 

xxxxxx = desired load address = start address 

When used in bootstrap format the storage map 

xx7776 

xx7744 

start 
address=xx7500 

xx7474 

Bootstrap Loader 

DUMPAB 

Two-word Stack Space 

6-16 

is: 

( 

( 

( 



7.1 
7.1.1 
7.1.2 

7.2 
7.2.1 
7.2.2 

7.3 
7.3.1 
7.3.2 
7.3.3 
7.3.3.1 
7.3.3.2 
7.3.3.3 
7.3.3.4 
7.3.4 

7.4 
7.4.1 
7.4.2 
7.4.3 
7.4.4 

7.5 
7.5.1 
7.5.2 
7.5.3 
7.5.4 
7.5.5 
7.5.6 
7.5.7 
7.5.8 
7.5.9 

7.6 
7.6.1 
7.6.2 

7.7 

7.8 

7.9 
7.9.1 
7.9.2 
7.9.3 
7.9.4 
7.9.5 
7.9.5.1 
7.9.5.2 
7.9.5.3 

CHAPTER 7 

INPUT/OUTPUT PROG~~ING 

INTRODUCTION 
Loading IOX 
Assembling IOX 

THE DEVICE ASSIGNMENT TABLE 
Reset 
Init 

BUFFER ARRANGEMENT IN DATA TRANSFER CO~mNDS 
Buffer Size 
Mode Byte 
Status Byte 

Non-Fatal Error Codes 
Done Bit 
End-of-Medium Bit 
End-of-File Bit 

Byte Count 

MODES 
Formatted ASCII 
Unformatted ASCII 
Formatted Binary 
Unformatted Binary 

DATA TRANSFERS 
Read 
Write 
Device Conflicts in Data Transfer Commands 
Waitr (Wait, Return) 
Waitr vs. Testing the Buffer Done Bit 
Single Buffer Transfer on One Device 
Double Buffering 
Readr (Real-Time Read) 
Writr (Real-Time Write) 

REENABLING THE READER AND RESTARTING 
Seek 
Restart 

FATAL ERRORS 

EXAMPLE OF PROGRAM USING IOX 

IOX INTERNAL INFORMATION 
Conflict Byte/Word 
Device Interrupt Table (DIT) 
Device Status Table (DST) 
Teletype Hardware Tab Facility 
Adding Devices to IOX 

Device Codes 
Table Modification 
Interrupt Routines 

7-i 

7-1 
7-3a 
7-3b 

7-3 
7-3 
7-4 

7-4 
7-5 
7-5 
7-6 
7-6 
7-7 
7-7 
7-8 
7-8 

7-8 
7-8 
7-11 
7-11 
7-12 

7-12 
7-12 
7-13 
7-13 
7-14 
7-15 
7-16 
7-17 
7-17 
7-18 

7-18 
7-18 
7-19 

7-19 

7-20 

7-22 
7-22 
7-23 
7-24 
7-24 
7-24 
7-25 
7-25 
7-27 





e, 

CO', 
'--_."" 

7.1 INTRODUCTION 

CHAPTER 7 

INPUT/OUTPUT PROGRAMMING 

lOX, the PDP-II Input/Output eXecutive, frees you from the details of deal­

ing directly with the I/O devices. It also provides certain programming 

formats so that programs written for the paper tape software system may be 

used in a monitor environment later with only minor coding changes. 

lOX provides asynchronous I/O service for the following non-file­

oriented external devices: 

1. Teletype keyboard, printer, and tape reader and punc~ 

2. High-speed paper tape reader and punch 

For Line Printer handli.ng, in addition to all lOX facilities, IOXLPT is 

available. 

Simple I/O requests can be made, specifying devices and data forms for 

interrupt-controlled data transfers, which can be occurring concurrently with 

the execution of a running user program. Multiple I/O devices may be run­

ning single or double buffered I/O processing simultaneously. 

Real-time capability is provided by allowing user programs to be exe­

cuted at device priority levels upon completion of a device action or data 

·transfer. 

Communication with lOX is accomplished by lOT (Input/Output Trap) in­

structions in the user's program. Each lOT is followed by two or three 

words consisting of one of the lOX commands and its operands. The rox com­

mands can be divided into two categori.es: 

1. those concerned with establishing necessary conditions for 
performing input and output (mainly initializations), and 

2. those concerned directly with the transfer of data. 

When transfer of data is occurring, lOX is operating at the priority 

level of the device. The calling program runs at its priority level, either 

concurrent with the data transfer, or sequentially. 

7-1 



Programming format for commands is: 

lOT 
.WORD (an address) 
.BYTE (a command code),(a slot number) 

Before using the data transfer commands, two preparatory tasks must 

be performed: 

1. Since device specifications are made by referencing "slots" 
in lOX's Device Assignment Table (DAT) rather than devices 
themselves, the slots specified in your code must have de­
vices assigned to them. 

2. The buffer, whose address is specified in your code, must 
be set up with information about the data. 

In those non-data-transfer commands where an address or slot number does 

not apply, a 0 must be used. Addresses or codes indicated can, of course, 

be specified symbolically. 

NOTES: 

1. At load time lOX loads the following interrupt and trap vec­
tors: Teletype keyboard, Teletype printer, high-speed reader, 
high-speed punch, illegal memory reference, and lOT. An error 
HALT is placed in location 40. 

( 

( 

2. The number of words required by lOX is 634 10 ; for IOXLPT, about 725 10 
words. 

3. lOX is not position-independent, but may be reassembled anywhere 
in core. As supplied, its load address is 15100; IOXLPT's load ( 
address is 34600. \ 

The following program segment illustrates a simple input-process-output se­

quence. It includes: 

a. The setting up of a single buffer 

b. All necessary initializations 

c. A formatted ASCII read into the buffer 

d. A wait for completion of the read 

e. Processing of data just read 

f. A write command from the buffer. 

7-2 

( 



( 

( 

RESET=2 
READ=ll 
WAITR=4 
WRITE=12 

lOT 
.WORD fJ 
.BYTE RESET,fJ 

lOT 
.WORD BUFFER 
.BYTE READ,fJ 

WAIT: lOT 
.WORD WAIT 

.BYTE WAITR,fJ 
(process BUFFER) 

lOT 
.WORD BUFFER 
.BYTE WRITE,l 

BUFFER: IfJfJ 
fJ 
fJ 
.=.+lfJfJ 

iASSIGN lOX COMMAND CODES 

iIOX RESET TO DO NECESSARY 
iINITIALIZATIONS INCLUDING 
iINITING SLOT 0 FOR KBD, AND 1 FOR TTY 

iTRAP TO lOX 
iSPECIFY BUFFER 
iREAD FROM KBD (SLOT 0) TILL 
iLINE FEED OR FORM FEED 

iTRAP TO lOX 
iBUSY RETURN ADDRESS WHILE WAITING 
iFOR KBD TO FINISH 
iWAIT FOR KBD (SLOT 0) TO FINISH 

iTRAP TO lOX 
iSPECIFY BUFFER 
iWRITE TO TELEPRINTER (SLOT 1) 

iBUFFER SIZE IN BYTES 
iCODE FOR FORMATTED ASCII MODE 
iIOX WILL SET HERE THE NUMBER OF BYTES READ 
iSTORAGE RESERVED FOR 100 BYTES 

In more complex programming it is likely that more than one buffer will be 

set up for the transfer of data, so that data processing can occur concur­

rently rather than sequentially, as here. Note too, that there are five 

lOX commands not used in this example that will help meet the requirements 

of I/O problems not as straightforward as this. 

7.1.1 Loading lOX 

lOX (IOXLPT) is supplied on source and binary tapes. Source 

tapes are assembled as described in Section 7.1.2. The binary 

tape of lOX (IOXLPT) is loaded with the Absolute Loader and 

must be in core before the user program to which it applies. 

When lOX is loading, the paper tape passes through the reader 

and there is no response at the terminal to indicate that 

loading is completed. 

IOXLPT is used instead of rox if a line printer is part of 

the system. 
7-3 



7.1.2 Assembling lOX 

If there is more than 4K of core available and it is desired 

to load lOX (or IOXLPT) in other than the normal location, 

lOX must be reassembled. 

The code 

.=15100 

.EOT 

appears at the beginning of the first lOX tape (PAl) and 

contains the starting address. Create a new tape containing 

(_. 

the new starting address desired; be sure to allow enough room ( 

for 634 10 words for lOX, 72510 for IOXLPT. For example, 

.=25100 

.EOT 

Use PAL-11A as described in Chapter 3 to assemble lOX and 

substitute the new section of tape for the first part of the 

old tape (PAl). After the new section is read, insert the lOX 

tape in the reader so the read head is past the old starting 

address and .EOT and type the RETURN key to read in the rest 

of the tape. 

Now read in the second tape (PA2). An EOF? 

message is output at the end of the second tape. Type the 

RETURN key and the END? message is printed. Put the tapes through 

for the second pass of the assembler. The resulting binary 

tape can be used as described in paragraph 7.1.1. 

7-3a 

(~ 

( 

( 



lOX (IOXLPT) can also be assembled with a user program if 

r desired. The .=15100 and .EOT lines must be deleted before 

lOX is assembled with a user program. 

c 

( 

lOX can be assembled into the program wherever desired but if 

it is the first tape read by the assembler, remove it from the 

reader before typing the RETURN key (after the EOF? message of the 

second tape. (lOX and IOXLPT have a .END code which would cause the 

assembly pass to end when read). Assembling a user program and 

lOX together eliminates the need to read in lOX each time 

the program is run. 

7.2 THE DEVICE ASSIGNMENT TABLE 

Use of the Device Assignment Table (DAT) serves to make your program de­

vice-independent by allowing you to reference a slot to which a device 

has been assigned, rather than a specific device itself. Thus, changing 

the input or output device .becomes a simple matter of reassigning a dif­

ferent device to the slot indicated in your program. 

The DAT is set up by means of the Reset and/or Init commands. The 

lOX codes for devices (listed in the description of the Init command below) 

are assigned to the slots. 

~ 7.2.1 Reset 

lOT 
.WORD 0 
.BYTE 2,0 

7-3b 



This command must be the first lOX command issued by a user program. It 

clears the DAT, initializes lOX, resets all devices to their state at 

power-up, enables keyboard interrupts, and initializes (Inits) DAT slots 

o and 1 for the keyboard and teleprinter respectively. 

7.2.2 Init 

lOT 
.WORD (address of device code) 
.BYTE 1, (slot number) 

The devic.e whose code (stored as a byte) is found at the specified address 

is associated with the specified slot (numbered in the range 0-7). The 

device interrupt is turned off when necessary. (The keyboard interrupt 

always remains enabled.) There is no restriction on the number of slots 

that can be Inited to the same device. 

DEVICE 
DEVICE CODE 

Teletype Keyboard (KBD) 1 

Teletype printer (TTY) 2 

Low-speed Reader (LSR) 3 

Low-Speed Punch (LSP) 4 

High-Speed Reader (HSR) 5 

High-Speed Punch (HSP) 6 

Line Printer 
(IOXLPT only) (LPT) 10 

Note that a device code is used only in the Init command. All other 

commands which reference a device, do so by means of a slot. Example: 

HSRCOD: 

INIT=l 
lOT 
.WORD HSRCOD 
.BYTE INIT,3 

.BYTE 5 

iTRAP TO lOX 
;INIT SLOT 3 
iFOR HSR 

iHSR CODE 

7.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS 

( 

( 

( 
'-

Use of data-transfer commands (Read, Write, Real-time Read, Real-time Write) ( 

requires the setting up of at least one buffer. This buffer is used not 

only to store data for processing,· but to hold information regarding the 

7-4 



quantity, form, and status of the data. The ~-data portion of the buffer 

~ is called the buffer header, and precedes the data portion. In data trans­

fer commands, it is the address of the first word of the buffer header that 

is specified in the word following the lOT of the command. 

( 

c 

( 

NOTE 

lOx uses the buffer header while transferring 
data. The user's program must not change or 
reference it. 

The buffer format is: 

BUFFER 
HEADER 

Location 

Buffer 

Buffer+2 

Buffer+3 

Buffer+4 

Buffer+6 

7.3.1 Buffer Size 

Contents 

Maximum number of data bytes {unsigned integer} 

Mode of data {byte} 

Status of data {byte} 

Number of data bytes involved in transfer (un­
signed integer) 

Actual data begins here 

BUFFER SIZE (in Bytes 

STATUS I MODE 

BYTE COUNT 

DATA 

· .. · · 

The first word of the buffer contains the size {in bytes} of the data por­

tion of the buffer as specified by the user. lOX will not store more than 

this many data bytes on input. Buffer size has no meaning on output. 

7. 3. 2 Mode Byte 

( The low-order byte of the second word holds information concerning the mode 

of transfer. A choice of four modes exists: 

7-5 



Coded as 

a. Formatted ASCII 0 (or 200 to suppress echo) r 
b. Formatted Binary 1 

c. Unformatted ASCII 2 (or 202 to suppress echo) 

d. Unformatted Binary 3 

The term echo applies only to the KBD. Data transfers from other devices 

neVer involve an echo. 

Bits 

1= 

7 

No echo 

6 

MODE BYTE 

5 4 3 2 1 

Unfor-
matted Binary 

Bits 

=1 

Echo Format-0= =0 
ted ASCII 

7.3.3 Status Byte 

Bits 0-4 contain the non-fatal error codes (coded octally) 

Bit 5 1 = End-Of-File has occurred (attempt at reading 
data after an End-Of-MedLum) 

Bit 6 1 = End-of-Medium has occurred (see Section 7.3.3.3) 

Bit 7 1 = Done (Data Transfer complete) 

STATUS BYTE 

7 6 5 4 3 

1 = 1 = 1 = ISEE CODES 
DONE EOM EOF I I 

NON-FATAL 

7.3.3.1 Non-Fatal Error Codes 

28 == checksum error 

38 == truncation of a long line 

48 = an improper mode 

7-6 

2 

I 

I 

ERRORS 

1 0 
I 

1 

( 

( 

(-



(-/ 

/' 

( 

c·· 

( 

( 

a. A checksum error can occur only on a Forma.tted Binary read 
(see Section 7.4.3). 

b. Truncation of a long line can occur on either a Formatted 
Binary or Formatted ASCII read (Section 7.4.1). This error 
occurs when the binary block or ASCII line is bigger than 
the buffer size specified in the buffer header. In both 
cases, lOX continues reading characters into the last byte 
in the buffer until the end of the binary block or ASCII 
line is encountered. 

c. An improper mode can occur only on a Formatted Binary read. 
Such occurrence means that the first non-null character 
encountered was not the proper starting character for a 
Formatted Binary block (see Section 7.4.3) 

7.3.3.2 Done Bit 

When the data transfer to or from the buffer is complete, the Done Bit is 

set by lOX. 

7.3.3.3 End-Of-Medium Bit 

The following conditions cause the EOM bit to be set in the buffer Status 

byte associated with a data transfer command. An EOM occurrence also sets 

the Done Bit. 

HSR HSP LSR LPT 

No tape No tape Timeout No paper 

Off line No power detected No power 

No power Printer drum gate open 

Overtemperature condition 

An End-Of-Medium condition on an output device is cleared by a manual 

operation such as putting a tape in the high-speed punch. lOX does not re­

tain any record of an EOM on an output device. However, an EOM on an input 

device is recorded by lOX so that succeeding attempts to read from that de­

vice will cause an End-Of-File (see Section 7.3.3.4). To reenable input 

the device must be manually readied and a Seek command (Section 7.6) execu­

ted on the proper slot. The Init and Reset commands will also clear the 

EOM condition for the device. 

7-7 



See Section 7.5.3 for information on detection of conditions causing 

LSR timeouts. 

When an End-Of-Medium has occurred on a Read, there may be data in the 

buffer. If an EOM has occurred on a Write, there is no way of knowing how 

much of the buffer was written. 

7.3.3.4 End-Of-File Bit 

An EOF condition appears in the Status pyte if an attempt to read is made 

after an EOM has occurred. EOF cannot occur on output. When an EOF has oc­

curred, no data is'available in the buffer. 

7.3.4 Byte Count 

The third word contains the Byte Count: 

Input: 

Output: 

7.4 MODES 

In unformatted data modes, lOX reads as many data bytes 
as the user has specified. In formatted modes, lOX in­
serts here the number of data bytes available in the buf­
fer. In all modes, if an EOM occurs, lOX will set the 
Byte Count equal to the number of bytes actually read. 
If an EOF occurs, Byte Count will be set to o. 

Byte Count determines the number of bytes output, for 
all modes. An HSP end-of-tape or LPT out-of-paper con­
dition will also terminate output, and EOM will be set 
in the Status byte. lOX does not modify the Byte Count 
on output. 

7.4.1 Formatted ASCII 

A Formatted ASCII read transfers 7-bit characters (bit 8 will be zero) 

until a line feed or form feed is read. lOX sets the Byte Count word in 

the buffer header to indicate the number of characters in the buffer. If 

the line is too long, characters are read and overlaid into the last byte 

of the buffer until an end-of-line (a line feed or form feed) or EOM is 

detected. Thus, if .there is no error, th~ buffer will always contain a 

line feed or form feed. 

A Formatted ASCII write transfers the number of 7-bit characters 

specified by the buffer Byte Count. Bit 8 will always be output as zero. 

7-8 

c-/ 

( 

( 

( 



( 

( 

( 

Device-DeEendent Functions 

Keyboard 

Seven-bit characters read from the keyboard are entered in the buffer and 

are echoed on the teleprinter except as follows: 

Null 

Tab 

(CTRL/TAB 
keys) 

RUBOUT 

CTRL/U -

Carriage 
Return 
(RETURN key) 

CTRL/P 

Ignored. This character is not echoed or 
transferred to the buffer. 

Echoes as spaces up to the next tab stop. 
"Stops" are located at every 8th carriage 
position. 

Deletes the previous character on the cur­
rent line and echoes as a backs lash ('). 
If there are no characters to delete, RUBOUT 
is ignored. 

Deletes the current line and echoes as tu. 

Echoes as a carriage return followed by a 
line feed. Both characters enter the buffer. 

Echoes as tP and causes a jump to the restart 
address, if non-zero (see 7.6.2). 

The echo may be suppressed by setting bit 7 of the buffer header Mode byte. 

If the buffer overflows, only the characters which fit into the buffer 

are echoed. Of course, characters which are deleted by RUBOUT or CTRL/U 

do not read into the buffer even though they are echoed. If a carriage re­

turn causes an overflow, or is typed after an overflow has occurred, a car­

riage return and line feed will be echoed but only the line feed will enter 

the buffer. 

In the following Formatted ASCII examples: 

a. assume there is room for five characters 

b. ,) indicates: 

in left column, the RETURN key 

in center column, the execution of a carriage return 

in right column, the ASCII code for carriage return 

c. '" indicates: , 
in center column, the execution of a lirle feed 

in right column, the ASCII code for line feed 
7-9 



d. RUB 
OUT 

indicates the RUBOUT key 

e. CTRL indicates the CTRL and U keys. 
U 

Typed 

ABC) 

ABCD) 

ABCDEF ). 

ABCDEF RUB) 
OUT 

CTRL RUB .J 
U OUT 

ABCDEF RUB RUB) 
OUT OUT 

ABCDEF RUB RUB RUB 
OUT OUT OUT 

x) 

Echoed 

ABC) i­

ABCD )-} 

ABCD ) i­

ABCD' )-} 

tU) -} 

ABCD ,\ ) i­

ABCD ,\ \ x)i-

Low-Speed Reader and High-Speed Reader 

Entered Buffer 

ABC) i­

ABCDi­

ABCDi-

.ABC)-} 

) i-

AX )i-

All characters are transferred to the buffer except that nulls and rubouts 

are ignored. 

Teleprinter 

Characters are printed from the buffer as they appear except that nulls are 

ignored and tabs are output as spaces up to the next tab stop. 

Low-Speed Punch and High-Speed Punch 

Characters are punched from the·buffer as they appear except that nulls are 

ignored and tabs are followed by a rubout. 

Line Printer (IOXLPT only) 

Characters are printed from the buffer as they appear except as follows: 

~ulls 

Tab 

Carriage 
Return 

Ignored 

Output as spaces up to the next tab stop. 

Ignored. 
follows. 

It is assumed that a line feed or form feed 
These characters cause the line printer "car-

riage" to advance. 

All characters beyond the 80th are ignored except a line feed or form feed. 

7-10 

(~ .. 

( 

(I 

c 

c 



r 

( 

7.4.2 Unformatted.ASCII 

Unformatted ASCII transfers the number of 7-bit characters specified by the 

header Byte Count. 

Device-Dependent Functions 

Keyboard 

Characters are read and echoed except as follows: 

Tab 

CTRL/P 

Echoes as spaces up to the next tab stop. 

Echoes as +P and causes a jump to the re­
start address,_if non-zero (see 7.6.2). 

7.4.3 Formatted Binary 

Formatted Binary is used to transfer checksummed binary data (8-bit charac-

C ters) in blocks. A Formatted Binary block appears as follows: 

( 
\ 

( 

Byte (Octal) 

xxx? 
XXX..) 

DDD 
DDD 

DDD 
DDD 

CCC 

Meaning 

Start of block 
Always null 

Block Byte Count (low-order followed by high­
order). Count includes data and preceding 
four bytes. 

Data bytes 

Checksum. Negation of the sum of all preced­
ing bytes in the block. 

lOX creates the block on output, from the buffer and buffer header. The 

Byte Count word in the buffer header specifies the number of data bytes fol­

lowing, which are to be output. Note that the Byte Count output is four lar­

ger than the header Byte Count. As the block is output, lOX calculates the 

checksum which is output following the last data byte. 

7-11 



On Formatted Binary reads, lOX ignores null characters until the first 

non-null character is read. If this character is a 001, a Formatted Binary 

block is assumed to follow and is read from the device under control of 

the Byte Count value. If the first non-null character is not 001, the read 

is immediately terminated arid error code 4 is set in the Status byte. As 
\ 

the block is read a checksum is calculated and compared to the checksum fol-

lowing the block. If the checksum is incorrect, error code 2 is set in the 

Status byte of the buffer header. If the binary block is too large (Byte 

Count less 4, larger than the Buffer Size specified in the header), the 

last byte of the buffer is overlaid until the last data byte has been read; 

error code 3 is set in the Status byte. 

Device-Dependent Functions 

None. Eight-bit data characters are transferred to and from the device and ( 

buffer exactly as they appear. 

7.4.4 Unformatted Binary 

This mode transfers 8-bit characters with no formatting or character conver­

sions of any kind. For both input and output, the buffer header Byte Count 

determines the number of characters transferred. 

Device-Dependent Functions 

None. 

7.5 DATA TRANSFERS 

7.5.1 Read 

lOT 
.WORD (address of first word of the buffer header) 
.BYTE 11, (slot number) 

This command causes lOX to read from the device associated with the 

specified slot according to the information found in the buffer header. 

lOX initiates the transfer of data, clears the Status byte, and returns con­

trol to the calling program. If the device on the selected slot is busy, 

or a conflicting device (see Section 7.5.3) is busy, lOX retains control 

until the data transfer can be initiated. Upon completion of the Read, 

the appropriate bits in the Status byte are set by lOX and the Byte Count 

word indicates the number of bytes in the data buffer. Note that use of 

7-12 

( 



r 

( 

( 

( 

( 

the KBD while an LSR Read is in progress will intersperse KBD characters 

into the buffer unpredictably. 

7.5.2 write 

lOT 
.WORD (address of first word of the buffer header) 
.BYTE 12, (slot number) 

lOX writes on the device associated with the specified slot according to 

the information found in the buffer header. Transfer of data occurs in 

the amount specified by Byte Count (Buffer+4). lOX returns control to the 

calling program as soon as the transfer has been initiated. If the device 

on the selected slot is busy, or a conflicting device is busy, lOX retains 

control until the transfer can be initiated. Upon completion of the Writer 

lOX will set the Status byte to the latest conditions. If a Write causes 

an EOM condition, the user has no way of determining how much of his buffer 

has been written (the Byte Count remains the same). 

7.5.3 Device Conflicts in Data Transfer Commands 

Because there is a physical association between the devices on the ASR Tele­

type, certain devices cannot be in use at the same time. When a data trans­

fer command is given, lOX simultaneously checks for two conditions before 

executing the command: 

a. Is the device requested already in use? and, 

b. Is there some other device in use that would result in an 
operational conflict? 

lOX resolves both conflict situations by waiting until the first de­

vice is no longer busy, before allowing the requested device to start func­

tioning. (This is an automatic Waitr command. See next section.) For 

example, if the LSR is in use, and either a KBD request or a second request 

for the LSR itself is made, lOX will wait until the current LSR read has 

been completed before returning control to the calling program. In the 

particular case of the LSR, lOX also performs a timeout check while wait­

ing for it to become available. 

When a Read command has been issued for the LSR, lOX waits about 100 

milliseconds for each character to be read. If no character is detected 

by this time (presumably because the LSR is turned·off, or out of tape), 

7-13 



a timeout is declared and lOX sets EOM in the appropriate buffer Status 

byte. 

The following is a table listing the devices. Corresponding to each 

device on the left is a list of devices (or the echo operation) which would 

conflict with it iri operation. 

Device 
All Possible Conflicting 
Devices or Operations 

KBD Echo, KBD, 

TTY Echo, KBD, 

LSR KBD, LSR 

LSP Echo, 

HSR HSR 

HSP HSP 

LPT (IOXLPT only)LPT 

7.5.4 Waitr (Wait, Return) 

lOT 
.WORD (busy return address) 
.BYTE 4, (slot number) 

KBD, 

TTY, LSR, LSP 

TTY, LSP 

TTY, LSP 

Waitr, like device conflict resolution, causes lOX to test the status of 

the device associated with the specified slot. If the device (or any 

possible conflicting device) is not transferring data, control is passed 

to the instruction following the Waitr. Otherwise, lOX transfers program 

control to the busy return address. If it is desired to continuously 

test for completion of data transfer on the device, the busy return ad­

dress of the immediately preceding lOT instruction can be specified, 

effecting a Wait loop. 

If a slot is inited to any device other than the LSR, control is 

returned to the calling program about 150 microseconds after execution 

of a Waitr. For the LSR, however, the time is about 100 milliseconds. 

Note that a not-busy return from Waitr normally means the device is 

available. However, in the case of a Write, this only means that the last 

character has been output to the device. The device is still in the process 

of printing or punching the character. Thus, care must be exercised when 

7-14 

( 

c 

( 

c 



r 

( 

( 

( 

<, 

( 

performing an IOX Reset, hardware RESET, or HALT after a Write-Waitr se­

quence, since these may prevent the last character from being physically 

output. 

7.5.5 waitr vs. Testing the Buffer Done Bit 

Since IOX permits you to have device-independent code, it may not be known, 

from run to run, what devices will be assigned to the slots in your program. 

Waitr tests the status, not only of the device it specifies, but also of 

all possible conflicting devices. 

This means that when Waitr indicates that the device is not busy, the 

data transfer on the device of interest may have been done for sometim~. 

Depending on the program and what devices are assigned to the slots for a 

given run, the Waitr could have been waiting an additional amount of time 

for a conflicting device to become free. 

Where this possibility exists and buffer availability is what is of 

interest, testing the Done bit of the Status byte (set when buffer transfer 

is complete) would be preferable to Waitr; whereas waitr would be prefer­

able if device availability is what is of interest. 

This distinction is made in order to write device-independent code. 

In the example below: 

a. If the devices at slots 2 and 3 could be guaranteed always 
to be conflicting, neither Waitr nor testing the Done bit 
would be necessary, because IOX would automatically wait 
for the busy device to finish before allowing the other de­
vice to begin. 

b. If these deviceR could be guaranteed never to be conflicting, 
it wouldn't matter which of these methods was used, because 
Waitr couldn't be waiting extra time for a conflicting de­
vice (of no interest) to become free. 

Example: PROGRAM A PROGRAM B 

IOT IOT 
• WORD BUF2 . WORD BUF2 
. BYTE READ, SLOT2 .BYTE READ, SLOT2 

IOT IOT 
• WORD BUFI • WORD BUFI 
. BYTE READ, SLOT2 .BYTE READ, SLOT2 

rOT IOT 
. WORD BUF2 . WORD BUF2 
• BYTE WRITE, SLOT3 . BYTE WRITE~ SLOT3 

7-15 
lcont. ) 



PROGRAM A 

DUNTST: TSTB BUF1+3 
BPL DUNTST 

PROGRAM B 

DEVTST: lOT 
• WORD DEVTST 
.BYTE WAITR,SLOT2 

lOT 
.WORD SLOT2DEV 
.BYTE INIT, SLOT4 

Programs A and B do two successive reads from. the same device into two 

different buffers. Since the devices are the same, lOX waits for the first 

read to finish before allowing the second to begin. 

In Program A, we wish to process buffer 1. To have issued a Waitr for 

the device associated with slot 2 could have meant waiting also for the de..,. 

r 

vice at slot 3 if that device were in conflict. Hence, testing the Done ( 

bit in the buffer header is the proper choice. 

In program B, we wish control of the device at slot 2, so that it can 

be assigned to another slot and so we must know its availability. Therefore, 

Waitr is appropriate. 

7.5.6 Single Buffer Transfer on One Device 

A: lOT 
.WORD BUFl 
.BYTE READ,SLOT3 

, 
BUSY: lOT 

.WORD BUSY 

.BYTE WAITR,SLOT3 

(process buffer 1) 

JMP A 

iTRAP TO lOX 
iSPECIFY BUFFER 
iREAD FROM DEVICE AT 
iSLOT 3 INTO BUFFER 

iTRAP TO lOX 
iSPECIFY BUSY RETURN ADDRESS 
iWAIT FOR DEVICE AT SLOT 
i3 TO FINISH READING 

The program segment above includes a Waitr which goes to a Busy Return ad­

dress that is its own lOT -- continuously testing the device at slot 3 for 

availability. In this instance, involving only a single device and a 

single buffer, a Done condition in the Buffer 1 Status byte can be inferred 

from the availability of the device at slot 3. This knowledge assures us 

that all data requested for Buffer 1 is available for processing. 

( 

( 

Testing the Done Bit of Buffer 1 might have been used instead, but was ( 

not necessary with only one device operating. Moreover, a Waitr, unlike a 

7-16 



(-

( 

( 

( 

(, 

Done Bit test, would detect a timeout on the LSR if that device happened 

to be associated with slot 3. 

7.5.7 Double Buffering 

A: 

B: 

lOT 
.WORD BUFl 
.BYTE READ,SLOT3 

lOT 
.WORD BUF2 
.BYTE READ,SLOT3 

iTRAP TO lOX 
iSPECIFY BUFFER 1 
iREAD FROM DEVICE AT 
iSLOT 3 INTO BUFFER 1 

iTRAP TO lOX 
iSPECIFY BUFFER 2 
iREAD FROM DEVICE AT SLOT 
;3 INTO BUFFER 2 

(process BUFl concurrent with Read into BUF2) 

lOT 
.WORD BUFl 
.BYTE READ,SLOT3 

;TRAP TO lOX 
iSPECIFY BUFFER 1 
iREAD FROM DEVICE AT 
; S'LOT 3 INTO BUFFER 1 

(process BUF2 concurrent with Read into BUF1) 

JMP A 

The example above illustrates a time-saving double-buffer scheme whereby data 

is processed in Buffer 1 at the same time as new data is being read into Buf­

fer 2i and, sequentially, data is processed in Buffer 2 at the same time as 

new data is being read into Buffer 1. 

Because lOX ensures that the requested device is free before initiating 

the command, the subsequent return of control from the lOT at A implies that 

the read Erior to A is completei that is, that buffer 1 is available for 

processing. Similarly, the return of control from the lOT at B implies that 

buffer 2 is available. Wai tr' s are not r,equired because lOX has automatic­

ally ensured the device's availability before initiating each Read. 

7.5.8 Readr (Real-time Read) 

lOT 
.WORD (address of first word of the buffer header) 
.BYTE 13, (slot number) 
.WORD (done-address) 

The Readr command functions as the Read except that upon completion of the 

data transfer, program control goes to the specified Done-address at the 

( priority level of the device. Readr is used when you wish to execute a seg­

ment of your program immediately upon completing the data transfer. lOX 

goes to the Done address by executing a JSR R7, Done-address. 

7-17 



The general registers, which were saved when the last character in-

terrupt occurred, are on the SP stack in the order indicated below: (_ .. -

(SP) -+ Return address to lOX 
R5 
R4 
R3 
R2 
Rl 
RO 

Return to lOX is accomplished by an RTSR7 instruction. lOX will then re­

store all registers and return to the interrupted program. Care should be 

taken in initiating another data transfer if the specified device can con­

flict with device requests at other priority levels. Waitr cannot be used 

to resolve conflict situations between priority levels. 

7.5.9 ~\Xi tr (Real-time Write) 

lOT 
.WORD (address of first word of the buffer header) 
.BYTE 14, (slot number of device) 
.WORD (done address) 

The writr command functions as the Write except that, upon completion 

( 

( 

of the data transfer, program control goes to the specified Done-address at 

the priority level of the device. lOX goes to the Done-address by executing 

a JSR R7,Done-address. The condition of the general registers and the re­

turn to lOX are the same as for Readr. writr is used when you wish to exe­

cute a segment of your program immediately upon completing the data trans- ( 

fer. 

As in the Readr, care should be taken in initiating another data trans­

fer if the specified device can conflict with device requests at the prior­

ity level of the calling program. 

7.6 REENABLING THE READER AND RESTARTING 

7.6.1 Seek 

lOT 
.WORD fJ 
. BYTE 5, (slot number of LSR or HSR) 

7-18 

C ! 



The Seek command clears lOX's internal End-Of-Medium (EOM) indicator 

on the LSR or HSR, making possible a subsequent read on those devices. 

C-/--Nith no EOM, an EOF cannot occur. The device associated with the specified 

slot remains Inited. 

( 

7.6.2 Restart 

lOT 
.WORD (address to restart) 
.BYTE 3,0 

This command designates an address at which to restart your program. After 

this command has been issued, typing CTRL/P on the KBD will transfer pro~ 

gram control to the restart address, providing there is no LSR read in pro­

gress. In such a case, the LSR must be turned off (causing a timeout) be­

fore typing a CTRL/P. If the Restart address is designated as 0, the CTRL/P 

Restart capability is disabled. 

The Restart command does not cancel any I/O in progress. It is the pro­
gram's responsibility in its restart routine to clean up any I/O by exe­
cuting a RESET command and ensuring that the stack pointer is reset. 

FATAL ERRORS ( 7.7 

Fatal errors result in program termination and a jump to location 40 8 
(loaded with a HALT by lOX), with RO set to the error code and Rl set as 

( 
\ 

"" 

( 

follows: 

If the fatal error was due to an illegal memory reference (code 0), 
Rl will contain the PC at the time of the error. 

If the fatal error was due to an error coded in the range 1-5, Rl 
will point to some element in the lOT argument list or to the in­
struction following the argument list, depending on whether lOX has 
finished decoding the arguments when it detects the error. 

Fatal Error Code 

0 

1 

2 

3 

4 

5 

Reason 

Illegal Memory Reference, SP overflow, illegal 
instruction 

Illegal lOX command 

Slot out of range 

Device out of range 

Slot not inited 

Illegal data mode 

7-19 



Note that the SP stack contains the value of the registers at the time of 

the error, namely 

(Sp)-+ R5 

R4 

R3 

R2 

Rl 

RO 

PC 

Processor Status (PS) 

(See Section 7.3.3.1 for a discussion of non-fatal errors.) 

7.8 EXAMPLE OF PROGRAM USING lOX 

This program is used to duplicate paper tape. Note that it could be altered 

by changing the device code at RDEV or PDEV. For instance, the program 

could easily be made to list a tape. 

RO=%O 
Rl=%l 
R2=%2 
R3=%3 
R4=%4 
R6=%6 
KSLOT=O 
TSLOT=l 
RSLOT=3 
PSLOT=4 
RESET=2 
RESTRT=3 
INIT=l 
WAITR=4 
READ=ll 
WRITE=12 
EOF=20000 
CR=15 
LF=12 

.=1000 

iCR ASSIGNED ASCII CODE FOR CARRIAGE RETURN 
iLF ASSIGNED ASCII CODE FOR LINE FEED 

MSGl: a i CANNED MESSAGE 
o iFORMATTED ASCII 

MSGlBC: ENDl-MSGlBC-2 iBYTE COUNT 
. BYTE CR,LF 
.ASCII / PLACE TAPE IN READER/ 
. BYTE CR,LF 
.ASCII / STRIKE CR WHEN READY/ 

ENDl: . EVEN 

7-20 

r 

( 

( 

( 



BUF3: 

RDEV: 
PDEV: 

BUF1: 
!. 

BUF2: 

BEGIN: 

( 

c 

A: 

( 

LOOP: 

( 

2 
o 
o 
o 

5 
6 

100 
3 
100 
.=.+100 
100 
3 
100 
.=.+100 

MOV #500,R6 

lOT 
o 
.BYTE RESET, 0 

lOT 
BEGIN 
.BYTE 
MOV 
MOV 

lOT 
MSGl 

RESTRT,O 
#100,BUF1+4 
#100,BUF2+4 

.BYTE WRITE,TSLOT 

lOT 
BUF3 
.BYTE READ,KSLOT 

lOT 

A 
.BYTE WAITR,KSLOT 

lOT 
RDEV 
. BYTE INIT,RSLOT 

lOT 
PDEV 
. BYTE INIT,PSLOT 

lOT 
BUFl 
.BYTE READ,RSLOT 

lOT 
BUF2 
.BYTE READ,RSLOT 

;BUFFER SIZE 
;FORMATTED ASCII MODE 
;BC 
iCR LF 

iDEVICE CODE FOR HSR 
iDEVICE CODE FOR HSP 

iBUFFER SIZE 
;CODE FOR UNFORMATTED BINARY 

.; SPECIFIES NUMBER OF BYTES FOR TRANSFER 
;RESERVES STORAGE FOR DATA 
;BUFFER SIZE 
;CODE FOR UNFORMATTED BINARY 
;SPECIFIES NUMBER OF BYTES FOR TRANSFER 
;RESERVES STORAGE FOR DATA 
;SPECIFY ADDRESS FOR BOTTOM OF STACK 

; INITIALIZATION 

;"BEGIN" SPECIFIED AS RESTART 
;ADDRESS FOR CTRL P 
;SET UP INITIAL BC ON BUFl 
;SET UP INITIAL BC ON BUF2 

;TYPE OUT DIRECTIONS 

;READ A CR,LF 

;WAIT FOR HIM TO TYPE A CARRIAGE RETURN, 
;LINE FEED 

;INIT READER 

;INIT PUNCH 

; START FIRST READ 

iREAD INTO 2ND BUFFER 

7-21 



BIT #EOF BUFl+2 iEND OF FILE? 
BNE BEGIN iYES 

iNO 

lOT iWRITE OUT THIS BUFFER 
BUFI 
.BYTE WRITE,PSLOT 

C: lOT iWAIT TILL DEVICE HAS FINISHED 
C 
.BYTE WAITR,PSLOT 

lOT iREAD INTO 1ST BUfFER 
BUFI 
. BYTE READ, RSLOT 

BIT #EOF,BUF2+2 iEND OF FILE? 
BNE BEGIN 

lOT iWRITE OUT BUFFER 2 
BUF2 
. BYTE WRITE,PSLOT 

B: lOT iWAIT TILL DEVICE HAS FINISHED 
B 
. BYTE WAITR,PSLOT 
BR LOOP 
. END BEGIN 

7.9 lOX INTERNAL INFORMATION 

7.9.1 Conflict Byte/Word 

The lOX Conflict byte (in IOXLPT, Conflict Word) contains the status (busy 

or free) of all devices as well as whether or not an echo is in progress. 

Bit 0 is tne echo bit, bits 1-6 (and 8 in IOXLPT) refer to the correspond-

ing codes for devices: 

If Bit is Set 

Bit 0 = Echo in progress 

Bit } 1 KBD busy Device = 

Bit } 2 TTY busy Device = 

Bit J 
Device 3 = LSR busy 

Bit 
Device} 

4 = LSP busy 

Bit } 
Device 5 = HSR busy 

7~22 

(~ 

\ 

j 

( 

( 

( 

( 



( 

( 

If Bit is Set 

Bit } 6 HSP busy Device = 

Bit J 8 LPT busy 
Device. 10 8 = 

In IOXLPT, the Conflict Byte is expanded to a word in order to accommodate 

the line printer, there being no bit 8 to correspond with that device's 

~ code of 10 8 (the lowest available code for an output device - see Section 

7.9.5.1). 

All possible Conflict 
Device Conflicting Devices Number 

KBD Echo, KBD, TTY, LSR, LSP 37 

TTY Echo, KBD, TTY, LSP 27 

LSR KBD, LSR 12 

LSP Echo, KBD, TTY, LSP 27 

HSR HSR 40 

HSP HSP 100 

LPT LPT 400 

For each of the devices in the left hand column, all the possible con­

flicts are listed along with thei.r respective conflict numbers. These numbers, 

representing bit patterns of the devices listed in column two above, are used 

to resolve any conflicting requests for devices. The appropriate number is 

( masked with the conflict byte. If the result is zero, there are no conflicts 

and the device being tested has its bit set allowing data transfer to begin. 

I 

\ 

7.9.2 Device Interrupt Table (DIT) 

Each device interrupt handler has associated with it a Device Interrupt Table 

(DIT) containing information that the handler needs: 

DIT Checksum 

DIT+2 Byte size from buffer header 

DIT+4 Address of Mode byte in buffer header 

DIT+6 Byte Location Pointer 

DIT+IO Byte Count 

7-23 



DIT+12 

DIT+14 

DIT+16 

Device code 

Real time done-address 

Address of device's data buffer register 

The device interrupt routines gain access to the proper data by means of 

the DIT entry. When a transfer is complete, they set the appropriate bits 

in the buffer header pointed to by the DIT contents. 

7.9.3 Device Status Table (DST) 

The Device Status Table (DST) is used by lOX to check for EOF conditions. 

This table contains a word for each device indicating an EOM condition with 

a 1. When an EOM condition is recognized on input, lOX not only sets the 

appropriate bit in the buffer status byte associated with the data transfer, 

it also records this occurrence in the DST. When a data transfer command 

is given, lOX checks the DST for the EOM condition. If the appropriate 

word has a value of 1, lOX sets EOF in the Status byte of the current­

command buffer. Since EOF is only possible for the LSR (code 3), and HSR 

(code 5), the words corresponding to those devices are the only ones that 

can ever be set to 1. 

7.9.4 Teletype Hardware Tab Facility 

If the Teletype model has a hardware tab facility, teleprinter output can 

be speeded up by: 

1. For lOX, deleting the code from I.TTYCK+6 through I.TAB3+3. 

2. For IOXLPT, skipping the code from I.IOLF through I.TAB3+3 
(for the teleprinter only - not the line printer). 

7.9.5 Adding Devices to lOX 

In order to add a device to lOX the following tasks must be done: 

a. Assign a legal code to the device 

b. Modify the lOX tables 

c. Provide an interrupt routine to handle data for the device. 

The line printer (in IOXLPT) will be used as an example throughout this dis­

cussion. 

7-24 

(-" 

( 

-( 

( 



7.9.5.1 Device Codes 

r The numbers from 7 to 178 are available for new-device codes, with the 

exception of 10 8 in the IOXLPT version. This code has been assigned to 

the line printer. The device code must be odd for an input device and 

even for an output device. This is so a check can be made for com­

mand/device correspondence; i.e., for a Read from an input device or a 

Write to an output device. 

( 

( 

If the newest device was assigned a number that is higher than the 

codes of all the other devices, I.MAXDEV must be redefined to that value. 

This is so an out-of-range device specification in an Init command 

can be detected. In IOXLPT, I.MAXDEV=lO. 

Since each device code functions as an index in several word tables, 

the entries relating to a given device must be placed at the same relative 

position in each appropriate table. That is, the code number must indicate 

how many words into the table the entry for that device will be found. 

This, of course, means accounting for any unused space preceding the entry, 

if the codes are not assigned in strict sequence. Table entries for tIle 

line printer are found at the 108th word past the table tag, i.e., at 

Table+20. 

7.9.5.2 Table Modification 

a. I.FUNC - Each entry is the octal value of the bit pattern in 

the device Control/Status Register that enables the correspond­

ing device and/or any interrupt facility it has. Bit setting 

this number into the device's Control/Status register turns 

the device on; bit clearing turns it off. Determine this value 

for the device to be added, and place the entry in the approp­

riate device position in the table. For example, the line printer 

Control/Status Register has an Interrupt Enable facility in bit 

6. This pattern of 100 is the LPT entry, and is located at 

LFUNC+20. 

b. I.SCRTAB - This table contains the addresses of the device 

Control/Status registers. The line printer entry I.LPTSCR has 

( the value 177514, and is located at I.SCRTAB+20. 

7-25 



c. I.DST - (Refer to Section 7.9.3.) Create an entry of ° for 

the device in the proper table location. Inserting a word 

of ° at I.DST+20 created a device status entry for the line 

printer. 

d. I.CONSIT - An entry in this table is used to set or clear 

a device's busy/free bit in the Conflict Byte (Conflict 

Word in IOXLPT). (See Section 7.9.1, and e. below.) Each 

value is obtained by setting one bit only - the bit number 

corresponding to the device number. The line printer, being 

device lOS' has a value of 400S (bit lOS set) and is located 

at I.CONSIT+20. 

In the lOX version without the line printer, entries to this table 

are found in the high-order bytes of Table I.CONFLC. One more input 

device entry can be added to it. In IOXLPT, however, I.CONSIT is a sepa­

rate word table, allowing eight more devices (four input and four output) 

to be added. Byte operations in the lOX I.CONSIT became word operations 

in IOXLPT to adapt to this expansion. 

e. I.CONFLC - (Refer to Section 7.9.1 on Conflict Byte/Word.) 

Entries are bit patterns of conflicting devices. Since 

the line printer can only conflict with itself, the I.CONFLC 

entry is equal to the I.CONSIT entry. As in the I.CONSIT 

table, byte operations were changed to word operations for 

I.CONFLC in IOXLPT. 

f. Create a DIT for the device (refer to Section 7.9.2) by 

assigning a DIT label and seven words of 0. If it is an 

output device, the address of the Device Buffer Register 

must be added as an eighth word. 

g. I.INTAB - This is a table of DIT addresses. Place the 

label of the DIT (mentioned in f. above) in the correct 

position in the table. I.INTAB+20 contains the line 

printer entry I.LPTDIT. 

7-26 

(-

( 

( 

( 

( 



7.9.5.3 I~terrupt'Routines 

r-- Write (and assign a label to) an interrupt routine for the device to: 

( 

( 

( 

1. Get a character 

2. Check for errors by means of the device Control/Status register 

3. Do character interpretation accor~ing to the device and mode 

4. Get a character in or out of the buffer 

5. Update lOX's Byte Count 

6. Compare lOX's Byte Count to User's Byte Count and Buffer size 
specification 

7. Return for next character 

Place the label of the interrupt routine at the address of the device vector, 

and follow it with the value of the interrupt priority in bits 7, 6, and 5. 

I.LPTIR, the address of the line printer interrupt routine, is at location 

200. Location 202 contains the value 200 (indicating priority level 4). 

If the device to be added is similar to the other single-character de­

vices, steps 3-7 above can be performed by lOX as indicated below: 

There are two routines, I.INPUT and I.OUTPUT, that are called from the 

interrupt routines. These routines mainly perform common functions for 

input and output devices. They are called as follows: 

JSR R5,I.INPUT and JSR R5,I.OUTPUT 

At the location following one of these calls is the DIT for the proper de­

vice. The routine is thus able to use R5 to reference the DIT entries. 

I.INPUT and I.OUTPUT also contain device-dependent code to perform 

functions such as tab counters for the teleprinter and line printer, and 

deletion of carriage returns in Formatted ASCII mode for the line printer. 

The device index value is used to identify the device. For the line printer, 

a symbol I.LPT, has been assigned the value 20 for convenient reference to 

the device index. 

7-27 





CHAPTER 8 

FLOATING-POINT MATH PACKAGE OVERVIEW 

8-i 





( 

c 

CHAPTER 8 

FLOATING POINT MATH PACKAGE OVERVIEW 

The new Floating-Point Math Package, FPMP-ll, is designed to 

bring the 2/4 word floating point format of the FORTRAN 

environment to the paper tape software system of the PDP-II. 

The numerical routines in FPMP-ll are the same as those of the 

DOS-II FORTRAN Operating Time System (OTS). TRAP and error 

handlers have been included to aid in interfacing with the 

FORTRAN routines. 

FPMP-ll provides an easy means of performing basic arithmetic 

operations such as add, subtract, multiply, divide, and compare. 

It also provides transcendental functions (SIN, COS, etc.), type 

conversions (integer to floating-point, 2-word to 4-word, etc.), 

and ASCII conversions (ASCII to 2-word floating-point, etc.). 

Floating-point notation is particularly useful for computations 

involving numerous multiply and divide operations where operand 

magnitudes may vary widely. FPMP-ll stores very large and very 

small numbers by saving only the significant digits and comput­

ing an exponent to account for leading and trailing zeros. 

To conserve core space in a small system, FPMP-ll can be 

tailored to include only those routines needed to run a par­

ticular user program. 

For more information on FPMP-ll, refer to the FPMP-ll User's 

Manual (DEC-ll-NFPMA-A-D and to Appendix G of this manual. 

8-1 





WRITING POSITION INDEPENDENT CODE 
Position Independent Modes 
Absolute Modes 
Writing Automatic PIC 
Writing Non-Automatic PIC 

Setting Up the Stack Pointer 

CHAPTER 9 

PROGRAMMING TECHNIQUES 

9.1 
9.1.1 
9.1. 2 
9.1. 3 
9.1. 4 
9.1.4.1 
9.1.4.2 
9.1.4.3 

Setting Up a Trap or Interrupt Vector 
Relocating Pointers 

9-2 
9-2 
9-3 
9-4 
9-5 
9-5 
9-5 
9-6 

9.2 

9.3 
9.3.1 
9.3.2 

LOADING UNUSED TRAP VECTORS 

CODING TECHNIQUES 
Altering Register Contents 
Subroutines 

9-i 

9-6 

9-7 
9-7 
9-8 





~----"--~-----~--~-.,,--~ "-"----~------. -~ .. ~~-~.~~-.. ---~-. ~-----.--,-~-~ 

(-

( 

CHAPTER 9 

PROGRAMMING TECHNIQUES 

This chapter presents various programming techniques. They 

can be used to enhance your programming and to make optimum use 

of the PDP-II processor. The reader is expected to be familiar 

with the PAL-IIA language (Chapter 3). 

We consider this chapter to be open-ended, i.e., we plan to 

add more programming techniques at every subsequent printing of 

the handbook. Should you discover different techniques or can 

improve on those already included, please submit your suggestions 

for consideration using the Reader's .Comments card appended to this 

handbook or by mailing them to: 

Digital Equipment Corporation 

Software Information Services, Bldg 3-5 

146 Main Street 

Maynard, Massachusetts 01754 

9-1 



9.1 WRITING POSITION INDEPENDENT CODE 

When a standard program is available for different users, it often be­

comes useful to be able to load the program into different areas of core 

and to run it there. There are several ways to do this: 

l. 

2. 

3. 

4. 

On 

Reassemble the program at the desired location. 

Use a relocating loader which accepts specially coded 
binary from the assembler. 

Have the program relocate itself after it is loaded. 

Write code which is position independent. 

small machines, reassembly is often performed. When the required 

r 

core is available, a relocating loader (usually called a linking loader) C-
is preferable. It generally is not economical to have a program relocate 

itself since hundreds o~ thousands of addresses may need adjustment. 

Writing position independent code is usually not possible because of the 

structure of the addressing of the object machine. However, on the PDP-II, 

position independent code (PIC) is possible. 

PIC is achieved on the PDP-II by using addressing modes which form ( Ii 

an effective memory address relative to the Program Counter (PC). Thus, 

if an instruction and its object(s) are moved in such a way that the 

relative distance between them is not altered, the same offset relative 

to the PC can be used in all positions in memory. Thus, PIC usually 

references locations relative to the current location. PIC may make abso-

lute references as long as the locations referenced stay in the same place 

while the PIC is relocated. For example, references to interrupt and trap 

vectors are absolute, as are references to device registers in the exter­

nal page and direct references to the general registers. 

9.1.1 Position Independent Modes 

There are three position independent modes or forms of instructions. They 

are: 

1. Branches -- the conditional branches, as well as the unconditional 
branch, BR, are position independent since the branch address is 
computed as an offset to the PC. 

2. Relative Memory References -- any relative memory reference of 
the form 

9-2 

( 

( 



(_ ... ) 

( 

( ) 

3. 

CLR X 
MOV X,Y 
JMP X 

is position independent because the assembler assembles it as 
an offset indexed by the PC. The offset is the difference be­
tween the referenced location and the PC. For example, assume 
the instruction CLR 200 is at address 100: 

100/ 005067 iFIRST WORD OF CLR 200 
102/ 000074 iOFFSET = 200-104 

The offset is added to the PC. The PC contains 104, Le., the 
address of the word following the offset. 

Although the form CLR X is position independent, the form 
CLR @X is not. Consider the following: 

S: CLR @X i CLEAR LOCATION A 

X: .WORD A iPOINTER TO A 

A: .WORD 0 

The contents of location X are used as the address of the 
operand in the location labeled A. Thus, if all of the code 
is relocated, the contents of location X must be altered to re­
flect the new address of A. If A, however, was the name associ­
ated with some fixed location (e.g., trap vector, device regis­
ter), then statements S and X would be relocated and A would 
remain fixed. Thus, the following code is position independent. 

A = 36 i ADDRESS OF SECOND WORD OF 
i TRAP VECTOR 

S: CLR @X iCLEAR LOCATION A 

X: .WORD A iPOINTER TO A 

Immediate Operands -- The assembler addressing form #X specifies 
immediate data, that is, the operand is in the instruction. 
Immediate data is positi.on independent since it is a part of the 
instruction and is moved with the instruction. Immediate data 
is fetched using the PC in the autoincrement mode. 

As with direct memory references, the addressing form @#X is 
not position independent. As before, the final effective address 
is absolute and points to a fixed location not relative to the 
PC. 

9.1.2 Absolute Modes 

Any time a memory location or register is used as a pointer to data, the 

reference is absolute. If the referenced data is fixed in memory, inde­

pendent of the position of the PIC (e.g., trap-interrupt vectors, device 

9 ... 3 



registers), the absolute modes must be used. l If the data is relative to ~' 
the PIC, the absolute modes must not be used unless the pointers involved 

are modified. The absolute modes are: 

@X 

@#X 

(R) 

(R)+ and 

@(R)+ and 

X(R) R~6 

@X(R) 

- (R) 

@- (R) 

or 7 

Location X is a pointer 

The immediate word is a pointer 

The register is a pointer 

The register is a pointer 

The register points to a pointer 

The base, X, modified by (R) is 
the address of the operand 

The base, modified by (R), is a 
pointer 

The non-deferred index modes and stack operations require a little 

clarification. As described in Sections 3.6.10 and 9.1.1, the form X(7) 

is the normal mode to reference memory and is a relative mode. Index 

mode, using a stack pointer (SP or other register) is also a relative 

( 

'mode and may be used conveniently in PIC. Basically, the stack pointer 

points to adynamic storage area and index mode is used to access data (l 
relative to the pointer. The stack pointer may be ihitially set up by a 

position independent program as shown in Section 9.1.4.1. In any case, 

once the pointer is set up, all data on the stack is referenced relative 

to the pointer. It should also be noted that since the form O(SP) is 

considered a relative mode so is its equivalent @SP. In addition, the 

forms (SP)+ and -(SP) are required for stack pops and pushes. 

9.1.3 Writing Automatic PIC 

( 

Automatic PIC is code which requires no alteration of addresses or point­

ers. Thus, memory references are limited to relative modes unless the 

location referenced is fixed (trap-interrupt vectors, etc.). In addition '\­

to the above rules, the following must be observed: 

1 

1. Start the program with .=0 to allow easy relocation using 
the Absolute Loader (see Chapter 6). 

2. All location setting statements must be of the form .=.±X 
or .= function of tags within the PIC. For example, .=A+IO 
where A is a local label. 

When PIC is not being written, references to fix~d locations may be 
performed with either the absolute or relative forms. 

9-4 



(_ .. 

( 

( 

( 

3. There must not be any absolute location setting statements. 
This means that a block of PIC cannot set up trap and/or 
interrupt vectors at load time with statements such as: 

.=34 

.WORD TRAPH,340 iTRAP VECTOR 

The Absolute Loader, when it is relocating PIC, relocates 
all data by the load bias (see Chapter 6). Thus, the data 
for the vector would be relocated to some other place. 
Vectors may be set at execution time (see Section 9.1.4). 

9.1.4 Writing Non-Automatic PIC 

Often it is not possible or economical to write totally automated PIC. 

In these cases, some relocation may be easily performed at execution time. 

Some of the required methods of solution are presented below. Basically, 

the methods operate by examining the PC to determine where the PIC is 

actually located. Then a relocation factor can be easily computed. In 

all examples, it is assumed that the code is assembled at zero and has 

been relocated somewhere else by the Absolute Loader. 

9.1.4.1 Setting Up the Stack Pointer -- Often the first task of a pro­

gram is to set the stack pointer (SP). This may be done as follows: 

BEG: 

.=0 

MOV PC,SP 
TST -(SP) 

iBEG IS THE FIRST INSTRUCTION OF 
iTHE PROGRAM. 
iSP=ADR BEG+2 
iDECREMENT SP BY 2. 
iA PUSH ONTO THE STACK WILL STORE 
iTHE DATA AT BEG-2. 

9.1.4.2 Setting Up a Trap or Interrupt Vector Assume the first word 

of the vector is to point to location INT which is in PIC. 

X: MOV PC,RO 
ADD #INT-X-2,RO 
MOV RO,@#VECT 

iRO = ADR X+2 
jADD OFFSET 
jMOVE POINTER TO VECTOR 

The offset INT-X-2 is equivalent to INT-(X+2) and X+2 is the value of the 

PC moved by $tatement X. If PC O is the PC that was assumed for the pro­

gram when loaded at 0, and if PC is the current real PC, then the calcula-n 
tion is: 

INT-PCO+PCn=INT+(PCn-PC O) 

Thus, the relocation factor, PCn-PCO' is added to the assembled value of 

INT to produce the relocated value of INT. 

9-5 



9.1.4.3 Relocating Pointers If pointers must be used, they may be 

relocated as shown above. For example, assume a list of data is to be (i 
accessed with the instruction 

ADD (RO)+,R1 

The pointer to the list, list L, may be calculated at execution time as 

follows: 

M: MOV PC,RO 
ADD #L-M-2,RO 

;GET CURRENT PC 
;ADD OFFSET 

Another variation is to gather all pointers into a table. The relo­

cation factor may be calculated once and then applied to all pointers in 

the table in a loop. 

X: 

LOOP: 

MOV 
SUB 
MOV 
ADD 
MOV 
ADD 
DEC 
BGE 

PC,RO 
#X+2,RO 
#PTRTBL,R1 
RO,R1 
#TBLLEN,R2 
RO, (R1) + 
R2 
LOOP 

;RELOCATE ALL ENTRIES IN PTRTBL 
;CALCULATE RELOCATION FACTOR 
;GET AND RELOCATE A POINTER 

TO PTRTBL 
;GET LENGTH OF TABLE 
;RELOCATE AN ENTRY 
; COUNT 
;BRANCH IF NOT DONE 

Care must be exercised when restarting a program which relocates a 

table of pointers. The restart procedure must not include the relocating 

again, i.e., the table must be relocated exactly once after each load. 

9.2 LOADING UNUSED TRAP VECTORS 

One of the features of thePDP-l1 is the ability to trap on various con-

( 

( 

di tions such as illegal instructions, reserved instructions, power failure, ( 

etc. However, if the trap vectors are not loaded with meaningful informa­

tion, the occurrence of any of these traps will cause unpredictable results. 

By loading the vectors as indicated below, it is possible to avoid these 

problems as well as gain meaningful information about. any unexpected traps 

that occur. This technique, which makes it easy to identify the source of '''-­

a trap, is to load each unused trap vector with: 

.=trap address 
• WORD .+2,HALT 

This will load the first word of the vector with the address of the second 

word of the vector (which contains a HALT). Thus, for example, a halt at 

9-6 

1· • 

( 



~. location 6 means that a trap through the vector at location 4 has occurred. 

( 

( 

The old PC and status may be examined by looking at the stack pointed to 

by register 6. 

The trap vectors of interest are: 

9.3 

Vector 
Location 

4 

10 

14 

20 

24 

30 

34 

CODING TECHNIQUES 

Halt At 
Location 

6 

12 

16 

22 

26 

32 

36 

Meaning 

Bus Er~ori Illegal Instruction; 
Stack Overflowi Nonexistent MemorYi 
Nonexistent Device; Word Referenced 
at Odd Address 

Reserved Instruction 

Trace Trap Instruction (000003) or 
T-bit Set in Status Word (used by ODT) 

IOT Executed (used by IOX) 

Power Failure or Restoration 

EMT Executed (used by FPP-ll) 

TRAP Executed 

Because of the great flexibility in PDP-II coding, time- and space-saving 

ways of performing operations may not be immediately apparent. Some com­

parisons follow. 

9.3.1 Altering Register Contents 

( The techniques described in this section take advantage of the automatic 

stepping feature of autoincrement and autodecrement modes when used 

especially in TST and CMP instructions. These instructions do not alter 

operands. However, it is important to make note of the following: 

( 

• These alternative ways of altering register contents 
affect the condition codes differently. 

• Register contents must be even when stepping by 2. 

1. Adding 2 to a register might be accomplished by ADD #2,RO. 
However, this takes two words, whereas TST (RO)+ which 
also adds 2 to a register, takes only one word. 

2. Subtracting 2 from a register can be done by the complemen­
tary instructions SUB #2,RO or TST -(RO) with the same 
conditions as in adding 2. 

9-7 



3. This can be extended to adding or subtracting 2 from two (. 
different registers, or 4 from the same register, in one 
single-word instruction: 

CMP (RO)+,(RO)+ ;ADD 4 TO RO 
CMP -(R1),-(R1) ;SUBTRACT 4 FROM Rl 
CMP (RO)+,-lR1) ;ADD 2 TO RO, SUBTRACT 2 FROM Rl 
CMP -(R3),-(R1) ;SUBTRACT 2 FROM BOTH R3 AND R1 
CMP (R3)+, (RO)+ ;ADD 2 TO BOTH R3 AND RO ) 

4. Variations of the examples above can be employed if the in­
structions operate on bytes and one of the registers is the 
Stack Pointer. These examples depend on the fact that the 
Stack Pointer (as, well as the PC) is always autoincremented or 
autodecremented by 2, whereas registers RO-R5 step by 1 in byte 
instructions. 

CMPB (SP)+, (R3)+ 
CMPB - (R3),- (SP) 
CMPB (R3}+,-(SP) 

;ADD 2 TO SP AND 1 TO R3 
;SUBTRACT 1 FROM R3 AND 2 FROM SP 
; ADD 1 '1'0 R3, SUBTRACT 2 FROM SP 

5. Popping an unwanted word off the processor stack (adding 2 to regis­

ter 6) and testing another value can be two separate instructions or one 

combined instruction: 

or 

TST (SP)+ 
TST COUNT 

MOV COUNT, (SP) + 

;POP WORD 
iSET CONDITION CODES FOR COUNT 

;POP WORD & SET CODES FOR COUNT 

The differences are that the TST instructions take three words and clear 

the Carry bit, and the MOV instruction takes two words and doesn't affect 

the Carry bit. 

9.3.2 Subroutines 

1. Condition codes set within a subroutine can be used to conditionally 

branch upon return to the calling program, since the RTS instruction does 

not affect condition codes. 

X: 

JSR PC,X 
BNE ABC 

CMP R2,DEF 
RTS PC 

;CALL SUBROUTINE X 
;BRANCH ON CONDITION SET 
;IN SUBROUTINE X 

;SUBROUTINE ENTRY 

;TEST CONDITION 
;RETURN TO CALLING PROGRAM 

( 

( 

c 

.'-

2. When a JSR first operand register is not the PC, data stored follow- (' 

ing a subroutine call can be accessed within the subroutine by referencing 

the register. (The register contains the return address.) 

9-8 



( 

( 

( 

( 

i, 

Y: 

JSR RS,Y 
.WORD HIGH 
.WORD LOW 

MOV (RS)+,R2 
MOV (RS)+,R4 . 
RTS RS 

Another possibility is: 

PSTARG: 

SUB: 

JSR RS,SUB 
BR PSTARG 

. WORD A 

.WORD B 

.WORD C 

MOVB@RS, COUNT 

MOV @14(R5),R2 
MOV @6 (RS) ,Rl 

RTS RS 

iLATEST RS VALUE WILL POINT HERE 

iVALUE OF HIGH ACCESSED 
iVALUE OF LOW ACCESSED 

iRETURN TO LOCATION 
iCONTAINED IN RS 

iLOW-ORDER BYTE IS OFFSET TO RETURN 
iADDRESS, WHICH EQUALS NO. OF ARGS . 
iADDRESS OF ARG A 
iADDRESS OF ARG B 
iADDRES~ OF ARG C 

i RETURN ADDRESS 

iGET NO. OF ARGS FROM LOW BYTE 
iOF BR (IF DESIRED) . 
iE.G., GET 6TH ARGUMENT 
iGET 3RD ARGUMENT 

iRETURNS TO BRANCH WHICH JUMPS PAST 
iARG LIST TO REAL RETURN ADDRESS. 

In the example above, the branch instruction contributes two main 

advantages: 

1. If R5 is unaltered when the ~TS is executed, return will always 
'be to the branch instruction. This ensures a return to the 
proper location even if the length of the argument list is 
shorter or longer than expected.-

2. The operand of the branch, being an offset past the argument 
list, provides the number of arguments in the list. 

-" Arguments can be made sharable by separating the data from the main 

code. This is easily accomplished by treating the JSR and its return as 

a subroutine itself: 

CALL: 

JSR PC,ARGLST 

9-9 

ARGLST: JSR RS,SUB 
BR PSTARG 
.WORD A 



3. The examples above all demonstrate the calling of subroutines from 

a non-reentrant program. The called subroutine can be either reentrant 

or non-reentrant in each case. The following example illustrates a 

method of also allowing calling programs to be reentrant. 

ments and linkage are first placed on the stack, simulating 

SUB, so that arguments are accessed from the subroutine via 

Return to the calling program is executed from the stack. 

The argu­

aJSR RS, 

X (RS) . 

CALL: 

X: 

RET: 

JSBR: 
BRN: 

MOV RS,-(SP) 
MOVJSBR,-(SP) 

MOV BRN,-(SP) 
MOV SP,RS 
JSR PC,SUB 
MOV {SP)+,RS 

JSR R6,@RS 
BR .+N+N+2 

iSAVE RS ON STACK. 
iPUSH INSTRUCTION JSR R6,@R5 ON 
iSTACK. PUSH ADDRESSES OF ARGU­
iMENTS ON STACK IN REVERSE ORDER 
i (SEE BELOW). 
iPUSH BRANCH INSTRUCTION ON STACK 
iMOVE ADDRESS OF BRANCH TO RS. 
;CALL SUB AND SAVE RETURN ON STACK. 
iRESTORE OLD RS UPON RETURN. 

iDATA AREA OF PROGRAM. 

;BRANCH PAST N WORD ARGUMENTS 

r' 

( 

The address of an argument can be pushed on the stack in several ways. ( 

Three are shown below. 

a. The arguments A, B, and C are read-only constants which are in 
memory (not on the stack): 

MOV #C,-(SP) iPUSH ADDRESS OF C 
MOV #B,-(SP) iPUSH ADD~SS OF B 
MOV #A,-(SP) ;PUSH ADDRESS OF A 

b. Arguments A, B, and C have their addresses.on the stack at the 
Lth, Mth., and Nth bytes from the top of the stack. 

MOV N(SP),-(SP) iPUSH ADDRESS OF C 
MOV M+2(SP),-(SP) iPUSH ADDRESS OF B 
MOV L+4(SP),-(SP) iPUSH ADDRESS OF A 

Note that the displacements from the top of the stack are adjusted 

c 

by two for each previous push because the top of the stack is be- '~ 
ing moved on each push. 

c. Arguments A, B, and C are on the· stack at the Lth, Mth, and Nth 
bytes from the top but their addresses are not . f-

MOV #N+2,-(SP) 
ADD SP,@SP 
MOV #M+4,-(SP) 
ADD SP,~SP 
MOV #L+6,-(SP) 
ADD SP,@SP 

iPUSH DISPLACEMENT TO ARGUMENT 
iCALCULATE ACTUAL ADDRESS OF C 

iADDRESS OF B 

iADDRESS OF A 

When subroutine SUB is entered, the stack appears as follows: 

9-10 

( 



.-

( 

( 

( 

RET 
BR .+N+N+2 

A 
B · · · JSR R6,@RS iBRANCH IS TO HERE 

old RS 

Subroutine SUB returns by means of an RTS RS, which places RS lnto the PC 

and pops the return address from the stack into RS. This causes the exe­

cution of the branch because RS has been loaded (at location X) with the 

address of the branch. The JSR branched to then returns control to the 

calling program, and in so doing, moves the current PC value into the SP, 

thereby removing everything above the old RS from the stack. Upon return 

at RET, this too is popped, restoring the original RS and SP values. 

4. The next example is a recursive subroutine (one that calls itself). 

Its function is to look for a matching right parenthesis for every left 

parenthesis encountered. The subroutine is called by JSR PC,A whenever a 

left parenthesis is encountered (R2 points to the character following it). 

When a right parenthesis is found, an RTS PC is executed, and if the right 

parenthesis is not the last legal one, another is searched for. When the 

final matching parenthesis is found, the RTS returns control to the main 

program. 
A: 

B: 

MOVB (R2)+,RO 
CMPB #' (,RO 
BNE B 
JSR PC,A 
BR A 

CMPB #') ,RO 

BNE A 
RTS PC 

iGET SUCCESSIVE CHARACTERS. 
iLOOK FOR LEFT PARENTHESIS. 
iFOUND? 
iLEFT PAREN FOUND, CALL SELF. 
iGO LOOK AT NEXT CHARACTER 
iLEFT PAREN NOT FOUND, LOOK FOR 
iRIGHT PAREN. 
iFOUND? IF NOT, GO TO A. 
iRETURN PAREN FOUND. IF NOT LAST, 
iGO TO B. IF LAST, GO TO MAIN PROGRAM. 

S. The example below illustrates the use of co-routines, called by 

JSR PC,@(SP)+. The program uses double buffering on both input and out­

put, performing as follows: 

Write 01 } 
Read II 
Process 12 

concurrently 
Write 02 I 
Read 12 ~ 
Process II J concurrently 

JSR PC,@(SP)+ always performs a jump to the address specified on top of 

the stack and replaces that address with the new return address. Each time 

the JSR at B is executed, it jumps to a different locationi initially to 

(, A and thereafter to the location following the JSR executed prior to the 

one at B. All other JSR's jump to B+2. 

9-11 



PC:::;%7 
BEGIN: (do I/O resets, inits, etc.) 

lOT iREAD INTO II TO START PROCESS 
.WORD II 
.BYTE READ,INSLOT 
MOV #A,-(6) ;INITIALIZE STACK FOR FIRST JSR 

B: JSR PC,@(6)+ ;DO I/O FOR 01 AND 11 OR 02 AND 12 

perform processing 

BR B iMORE I/O 
;END OF MAIN LOOP 
iI/O CO-ROUTINES 

A: lOT ;READ INTO 12 
.WORD 12 
.BYTE READ,INSLOT 

set parameters to process II, 01 

JSR PC, @ (6) + iRETURN TO PROCESS AT B+2 
lOT ;WRITE FROM 01 
• WORD 01 
. BYTE WRITE,OUTSLOT 
lOT iREAD INTO II 
.WORD II 
.BYTE READ,INSLOT 

set parameters to process 12, 02 

JSR PC,@(6)+ iRETURN TO PROCESS AT B+2 
lOT ;WRITE FROM 02 
. WORD 02 
• BYTE WRITE,OUTSLOT 
BR A iREAD INTO 12· 

6. The trap handler, below, simulates a two-word JSR instruction with 

a one-word TRAP instruction. In this example, all TRAP instructions in 

the program take an operand, and trap to' the handler address at location 

34. The table of subroutine addresses (e.g., A, B, ... ) can be constructed 

as follows: 

TABLE: 
CALA=.-TABLE 
.WORD A 

CALB=.-TABLE 
.WORD B 

;CALLED BY: TRAP CALA 

;CALLED BY: TRAP CALB 

9-12 

r! 

( 

( 

( 

( 



( 

( 

( \ 

Another way to con$truct the table: 

TABLE: 
CALA=.-TABLE+TRAP 
.WORD A iCALL~D BY: CALA 

The TRAP handler for either of the above methods follows: 

TRAP34: MOV @SP, 2 (SP) i REPLACE STACKED PS WITH pet. 
SUB #2,@SP iGET POINTER TO TRAP INSTRUCTION. 
MOV @(SP)+,-(SP)iREPLACE ADDRESS OF TRAP WITH 

i TRAP INST.RUC'l'ION ITSELF. 
ADD #TABLE-TRAP,@SP iCALCULATE SUBROUTINE ADDR. 
MOV @(SP)+,PC ;JUMP TO SUBROUTINE. 

In the example above, if the third instruction had been written 

MOV ~(SP), (SP) it would have taken an extra word since @(SP) is in 

Index Mode and assembles as @O(SP). In the final instruction, a jump 

was executed by a MOV @(SP)+,PC because no equivalent JMPinstruction 

exists. 

Following are some JMP and MOV equivalences (note that JMP does not 

affect condition codes) . 

1 

JMP (R4) = MOV R4,PC 

JMP @ (.R4) MOV (R4),PC 
(2 words) (l word) 

none = MOV @(R4),PC 

JMP - (R4) = none 

JMP @ (R4) + = MOV (R4)+,PC 

JMP @- (R4) . = MOV -(R4) ,PC 

none = MOV @(R4)+,PC 

none = MOV @-(R4),PC 

JMP X = MOV #X,PC 

JMP @X = MOV X,PC 

none = MOV @X,PC 

Replacing the saved PS loses the T-bit status. If a breakpoint 
has been set on the TRAP instruction, ODT will nOt gain control 
again to reinsert the breakpoints because the T-bit trap will 
not occur. 

9-13 



The TRAP handler can be useful, also, as a patching technique. C--1 
Jumping out to a patch area is often difficult because a two-word 

jump must be performed. However, the one-word TRAP instruction 

may be used to dispatch to patch areas. A sufficient number of 

slots for patching should first be reserved in the dispatch table 

of the TRAP handler. The jump can then be accomplished by' placing 

the address of the patch area into the table and inserting the 

proper TRAP instruction where the patch is to be made .. 

( 

( 

( 

( 

9-14 



APPENDIX A 

APPENDIX B 

APPENDIX C 

APPENDIX D 

APPENDIX E 

APPENDIX F 

APPENDIX G 

APPENDIX H 

APPENDIX I 

APPENDIX J 

APPENDIX K 

APPENDIX L 

APPENDICES 

ASCII Character Set 

PAL-llA Assembly Language and Assembler 

Text Editor, ED-ll 

Debugging Object Programs 

Loading and Dumping Core Memory 

INPUT/OUTPUT Programming, lOX 

Summary of Floating-Point and Math Package, 
FPMP-ll 

Tape Duplication 

Assembling the PAL-llA Assembler 

Standard PDP-ll Abbreviations 

Conversion Tables 

Note to Users of Serial LA3~ and 6~~, 
12~~ and 24~~ Baud VT~5's 

A-i 

A-l 

B-1 

C-l 

D-l 

E-l 

F-l 

G-l 

H-l 

1-1 

J-l 

K-l 

L-l 





c-

( . 
-~j 

EVEN 
PARITY 
BIT 

fJ 
1 

1 

1 

fJ 
fJ 
1 
1 

1. 
fJ 

1 

1 

1 

1 

1 
fJ 

fJ 
1 
1 
~ 
1 

APPENDIX A 

ASCII CHARACTER SET 

NOTE 

The PTS systems punch ASCII with fJ in the parity bit. 
When ASCII is read, the parity bit is ignored. 

7-BIT 
OCTAL 
CODE 

fJfJfJ 
fJfJl 

fJfJ2 

fJfJ3 

fJfJ4 

~fJ5 
fJfJ6 
fJfJ7 
fJlfJ 

fJll 
fJ12 

fJ13 
fJ14 

fJ15 

fJ16 

fJ17 

~2fJ 
fJ21 

fJ22 

fJ23 

~24 

fJ25 

fJ26 
fJ27 

fJ3fJ 
fJ31 
fJ32 
fJ33 
fJ34 

CHARACTER 

NUL 
SOH 

STX 

ETX 

EOT 

ENQ 
ACK 
BEL 
BS 

HT 
LF 

VT 
FF 

CR 

SO 

SI 

DLE 
DCl 

DC2 

DC3 

DC4 

NAK 

SYN 
ETB 

CAN 
EM 
SUB 
ESC 
FS 

REMARKS 

NULL, TAPE FEED, CONTROL SHIFT P. 
START OF HEADING; ALSO SOM, START OF MESSAGE, 
CONTROL A. 
START OF TEXT; ALSO EOA, END OF ADDRESS, 
CONTROL B. 
END OF TEXT; ALSO EOM, END OF MESSAGE, CON­
TROL C. 
END OF TRANSMISSION (END); SHUTS OFF TWX 
MACHINES, CONTROL D. 
ENQUIRY (ENQRY); ALSO WRU, CONTROL E. 
ACKNOWLEDGE; ALSO RU, CONTROL F. 
RINGS THE BELL. CONTROL G. 
BACKSPACE; ALSO FEO, FORMAT EFFECTOR. BACK­
SPACES SOME MACHINES, CONTROL H. 
HORIZONTAL TAB. CONTROL I. 
LINE FEED OR LINE SPACE (NEW LINE); ADVANCES 
PAPER TO NEXT LINE, DUP~ICATED BY CONTROL J. 
VERTICAL TAB (VTAB). CONTROL K. 
FORM FEED TO TOP OF NEXT PAGE (PAGE). CON­
TROL L. 
CARRIAGE RETURN TO BEGINNING OF LINE. DUPLI­
CATED BY CONTROL M. 
SHIFT OUT; CHANGES RIBBON COLOR TO RED. CON­
TROL N. 
SHIFT IN; CHANGES RIBBON COLOR TO BLACK. 
CONTROL O. 
DATA LINK ESCAPE. CONTROL P (DCfJ). 
DEVICE CONTROL 1, TURNS TRANSMITTER (READER) 
ON, CONTROL Q (X ON) . 
DEVICE CONTROL 2, TURNS PUNCH OR AUXILIARY 
ON. CONTROL R (TAPE, AUX ON) . 
DEVICE CONTROL 3, TURNS TRANSMITTER (READER) 
OFF, CONTROL S (X OFF) . 
DEVICE CONTROL 4, TURNS PUNCH OR AUXILIARY 
OFF. CONTROL T (JPAPE., AUX OFF) . 
NEGATIVE ACKNOWLEDGE; ALSO ERR, ERROR. CON­
TROL U. 
SYNCHRONOUS IDLE (SYNC). CONTROL V. 
END OF TRANSMISSION BLOCK; ALSO LEM, LOGICAL 
END OF MEDIUM. CONTROL W. 
CANCEL (CANCL). CONTROL X. 
END OF MEDIUM. CONTROL Y. 
SUBS'l'ITUTE. CONTROL Z. 
ESCAPE. PREFIX. CONTROL SHIFT K. 
FILE SEPARATOR. CONTROL SHIFT L. 

A-l 



EVEN 7-BIT 
PARITY OCTAL 
BIT CODE CHARACTER REMARKS 

~ 

~ ~35 GS GROUP SEPARATOR. CONTROL SHIFT M. 
( :1 

~ ~36 RS RECORD SEPARATOR. CONTROL SHIFT N. 
1 ~37 US UNIT SEPARATOR. CONTROL SHIFT o. 
1 ~4~ SP SPACE. 
~ ~41 ! 
~ ~42 " 
1 ~43 # 
~ ~44 $ 
1 ~45 % 
1 ~46 & 

~ ~47 
, ACCENT ACUTE OR APOSTROPHE. 

~ ~5~ ( 
1 ~51 ) 
1 ~52 * 
% ~53 + 
1 ~54 I. e' ~ ~55 

• ! ~56 . --

~57 / 
~ ~6~ ~ 
1 ~61 1 
1 .0'62 2 
¢ ~63 3 
1 ~64 4 
~ .0'65 5 
~ ¢66 6 (, 1 ~67 7 
1 ¢7¢ 8 
~ ~71 9 
.0' .0'72 
1 ¢73 ; 
.~ ~74 < 
1 ¢75 = 
1 ~76 > 
.0' .0'77 ? 
1 1¢~ @ (, ) 
~ 1.0'1 A 
.0' 1~2 B 
1 1.0'3 C 
.0' 1{14 D 
1 1~5 E 
1 1~6 F 
{1 1~7 G .\. 

¢ 11.0 It 
1 111 I 
1 112 J 
.0 113 K 
1 114 L 
~ 115 M 
¢ 116 N 
1 117 0 
.0 12{1 P 
1 121 Q ( 
1 122 R 
.0' 123 S 
1 124 T 

A-2 



EVEN 7-BIT 
PARITY OCTAL 

C- BIT CODE CHARACTER REMARKS 

~ 125 U 
~ 126 V 
1 127 W 
1 13~ X 
~ 131 Y 
~ 132 Z 

~- 1 133 [ SHIFT K. 
~ 134 , SHIFT L. 
1 135 ] SHIFT M. 
1 136 t 

" ~ 137 + 

~ 14~ "- ACCENT GRAVE. 
~ 175 } THIS CODE GENERATED BY ALT MODE. 
~ 176 THIS CODE GENERATED BY ESC KEY (IF PRESENT).. 
1 177 DEL DELETE, RUB OUT. 

/ 
\, LOWER CASE ALPHABET FOLLOWS (TELETYPE MODEL 

37 ONLY) . 

1 141 a 
1 142 b 
~ 143 c 
1 144 d 
~ 145 e 

(-
~ 146 f 
1 147 g 
1 15~ h 
~ 151 i 
~ 152 j 
1 153 k 
~ 154 1 
1 155 m 
1 156 n 
~ 157 0 

/ 1 16~ P 
(~: ~ 161 q 

~ 162 r 
1 163 s 
~ 164 t 
1 165 u 
1 166 v 
~ 167 w 

" ~ 17~ x 
1 171 Y 
1 172 z 
~ 173 { 
1 174 I 

A-3 





( 

( 

( 

( 

APPENDIX B 

PAL-llA ASSEMBLY LANGUAGE AND ASSEMBLER 

B.l SPECIAL CHARACTERS 

Character 

form feed 

line feed 

carriage return 

= 

% 

tab 

space 

# 

@ 

+ 

& 

" 

Function 

Source line terminator 

Source line terminator 

Source statement terminator 

Label terminator 

Direct assignment indicator 

Register term indicator 

Item terminator 
Field terminator 

Item terminator 
Field terminator 

Immediate expression indicator 

Deferred addressing indicator 

Initial register indicator 

Terminal register indicator 

Operand field separator 

Comment field indicator 

Arithmetic addition oper'ator 

Arithmetic subtraction operator 

Logical AND operator 

Logical OR operator 

Double ASCII character indicator 

Single ASCII character indicator 

Assembly location counter 

B-1 



B.2 ADDRESS MODE SYNTAX 

n is an integer between 0 and 7 representing a register. R is a register 

expression, E is an expression, ER is either a register expression or an 

expression in the range 0 to 7. 

Format 

R 

@R or (ER) 

(ER) + 

@(ER)+ 

- (ER) 

@- (ER) 

E (ER) 

@E(ER) 

#E 

@#E 

E 

@E 

Address 
Mode 
Name 

Register 

Deferred Register 

Autoincrement 

Deferred Auto­
increment 

Autodecrement 

Deferred Auto­
decrement 

Index 

Deferred Index 

Immediate 

Absolute 

Relative 

Deferred Relative 

Address 
Mode 
Number 

On 

ln 

2n 

3n 

4n 

5n 

6n 

7n 

27 

37 

67 

77 

B-2 

Meaning 

Register R contains the op­
erand. R is a register ex­
pression. 

Register R contains the op­
erand address. 

The contents of the regis­
ter specified by ER are in­
cremented after being used 
as the address of the oper­
and. 

ER contains the pointer to 
the address of the operand. 
ER is incremented after use. 

The contents of register ER 
are decremented before being 
used as the address of the 
operand. 

The contents of register ER 
are decremented before being 
used as the pointer to the 
address of the operand. 

E plus the contents of the 
register specified, ER, is 
the address of the operand. 

E added to ER gives the point­
er to the address of the oper­
and. 

E is the operand. 

E is the address of the oper­
and. 

E is the address of the oper­
and. 

E is the pointer to the ad­
dress of the operand. 

r-' 

( 

( 

( 

( 



B.3 INSTRUCTIONS 

C-- The instructions which follow are grouped according to the operands they 
take and the bit patterns of their op-codes. 

( 

the 

( , 

In the representation of op-codes, the following symbols are used: 

SS 

DD 

xx 

R 

Source operand specified by a 6-bit address 
mode. 

Destination operand specified by a 6-bit ad­
dress mode. 

8-bit offset to a location (branch instruc­
tions) 

Integer between 0 and 7 representing a general 
register. 

Symbols used in the description of instruction operations are: 

SE Source Effective address 

DE Destination Effective address 

( 1 Contents of 

1& transferred to 

The condition codes in the processor status word (PS) are affected 
instructions. These condition codes are represented as follows! 

N !:!egative bit: set if the result is negative 

Z Zero bit: set if the result is zero -

by 

V oVerflow bit: set if the operation caused an overflow 

c· 

( 

C £arry bit: set if the operation caused a carry 

In the representation of the instruction's effect on the condition 

codes, the following symbols are used: 

* Conditionally set 

Not affected 

0 Cleared 

I Set 
B-3 



To set conditionally means to use the instruction's result to deter-

mine the state of the code (see the PDP-II Prooes'8or Handbook. (: 
Logical operations are represented by the following symbols: 

Inclusive OR 

CD Exclusive OR 

& AND 

(used over a symbol) NOT (Le. , l' s complement) 

B.3.1 Double-OEerand Instructions Op A,A 
Status Word 

Condition Codes ( °E-Code MNEMONIC Stands for °Eeration N Z V C 

OlSSDD MOV MOVe (SE)+ DE * '* 0 
11SSDD MOVB MOVe Byte 

02SSDD CMP CoMPare (SE)-(DE) * * * * 
12SSDD CMPB CoMPare Byte 

03SSDD BIT BIt Test (SE) & (DE) * * 0 
13SSDD BITB BIt Test Byte ( 
04SSDD BIC BIt Clear (SE) & (DE) + DE * * 0 
14SSDD BICB BIt Clear Byte 

05SSDD BIS BIt Set (SE) ! (DE) + DE * * 0 
15SSDD BISB BIt Set Byte 

06SSDD ADD ADD (SE)+(DE)+ DE * * * * 
16SSDD SUB SUBtract (DE)-(SE)+ DE * '* * * ( 

" 
B.3.2 Single-OEerand Instructions Op A 

Status Word 
Condition Codes 

°E';"Code MNEMONIC Stands for °Eeration N Z V C 

0050DD CLR CLeaR [1+ DE 0 1 0 0 
lO50DD CLRB CLeaR Byte 

0051DD COM COMplement (DE)+ DE * * 0 1 
lO51DD COMB COMplement Byte i-

0052DD INC INCrement (DE)+l+ DE * * * 
lO52DD INCB INCrement Byte 

0053DD DEC DECrement (DE)-l+ DE * * * ( lO53DD DECB DECrement Byte 

0054DD NEG NEGate (DE)+l+ DE * * * * 
lO54DD NEGB NEGate Byte 

B-4 



Status Word 
Condition Codes 

r QE-Code MNEMONIC Stands for Operation N Z V C 

005500 AOC AOd Carry (OE)+(C)+ OE * * * * 
105500 AOCB AOd Carry Byte 

0056DO SBC SuBtract Carry (OE)-(C)+.OE * * * * 
105600 SBCB SuBtract Carry Byte 

<" 005700 TST TeST (OE) -.0'+ OE * * 0 0 
105700 TSTB TeST Byte 

B.3.3 Rotate/Shift Instructions Op A 
Status Word 

Condition Codes 
°E-Code MNEMONIC Stands for °Eeration N Z V C 

( 006000 ROR ROtate Right c ,. 0 
\ ~ I Ij * * * * '. 

106000 RORB ROtate Right even or odd byte 
Byte ~ I h * * * * 

006100 ROL ROtate Left 
·ra <--1 h * * * * 

( 
106100 ROLB ROtate Left even or odd byte 

Byte rD~ ~ * * * * 

006200 ASR Arithmetic c Ie 14 , 0 
Shift Right 0 i~, Sb * * * * Q 

106200 ASRB Arithmetic even or odd byte 
Shift Right 0 t ~~ Sn * * * * Byte 0 

Arithmetic 
c 

006300 ASL 

~2: *0 Shift Left * * * * 

106300 ASLB Arithmetic even or odd byte 
Shift Left ~f::' : Pro * * * * Byte 

000100 JMP JuMP OE+ PC 

( 000300 SWAB SWAp Bytes S 15 • 7 ° '- 0 I I I * * 0 0 
,~ 

.,. 

B-5 



B.3.4 Operate Instructions Op 

Op-Code MNEMONIC Stands for 

000000 HALT HALT 

000001 WAIT WAIT 

000002 RTI ReTurn 
from 
Inter-
rupt 

000005 RESET RESET 

Operation 

The computer stops all 
functions. 

The computer stops and 
and waits for an inter­
rupt. 

The PC and PS are popped 
off the SP stack: 

( (SP) ) -+- PC 
(SP)+2-+- SP 
((SP»-+- PS 
(SP) +2-+- SP 

RTI is also used to re-
turn from a trap. 

Returns all I/O devices 
to power-on state. 

B.3.S Trap Instructions Op or Op E where 05..E5..377a 
*OP (only) 

°E-Code MNEMONIC Stands for °Eeration 

*000003 (none) (breakpoint Trap to location 14. This 
trap) is used to call ODT. 

*000004 lOT Input/Out- Trap to location 20. This 
put Trap is used to call lOX. 

104000- EMT EMulator Trap to location 30. This 

Status Word 
Condition Codes 

N Z V C 

ft * * * 

Status Word 
Condition Codes 

N Z V C 

* * * * 

* * * * 

* * * * 
104377 Trap is used to call system pro-

grams. 

104400 TRAP TRAP Trap to location 34. This * * * * 
104777 is used to call any routine 

desired by the programmer. 

CONDITION CODE OPERATES 

0E-Code MNEMONIC Stands for 

000241 ' CLC CLear Carry bit in PS. 

000261 SEC SEt Carry bit. 

000242 CLV CLear oVerflow bit. 

000262 SEV SEt oVerflow bit. 

B-6 

(: 
\ 

e 

( 

--

( 

'\ 



Op-Code MNEMONIC Stands for 

r- 000244 CLZ CLear Zero bit. 

000264 SEZ SEt Zero bit. 

000250 CLN CLear Negative bit. 

000270 SEN SEt Negative bit. 
j, 

000254 CNZ CLear Negative and Zero bits. 

~; 
000257 CCC Clear all Condition Codes 

000277 SCC Set all Condition CodeS. 

( 
B.3.6 Branch Instructions Op E where-12810~(E-·-2)/2~12710 

Condition to be met if 
0:e-Code MNEMONIC Stands for branch is to occur 

0004XX BR BRanch always 

OOIOXX BNE Branch if Not Equal Z=O 
(to zero) 

( 0014XX BEQ Branch if EQual (to Z=l 
zero) 

0020XX BGE Branch if Greater than N(DV=O 
or Equal (to zero) 

0024XX BLT Branch if Less Than NeD V=l 
(zero) 

0030XX BGT- Branch if Greater Than Z! (N(DV) =0 
/ (zero) 
\ 

0034XX BLE Branch if Less than or Z! (N(DV)=1 
Equal (to zero) 

1000XX BPL Branch if PLus N=O 

1004XX BMI Branch if MInus N=l 

1010XX BHI Branch if HIgher C Z = 0 

1014XX BLOS Branch if LOwer or Same C Z = I 

1020XX BVC Branch if oVerflow Clear V=O 

1024XX BVS Branch if oVerflow Set V=l 

( 1030XX BCC (or Branch if Carry Clear C=O 
\ BHIS) (or Branch if HIgher or 

Same) 
C=l 1034XX BCS (or Branch if carry Set (or 

BLO) Branch if LOwer) 

B~7 



------ ------------- - ---- ---- ------------ - ------
----.---.-----------.----~------... --------.. --.--------~---.--.------.----.. -------.-----.- .. ----------~.----~---.--.--.------,----------.-------

B.3.7 Subroutine Call Op ER, A 

Op-Code MNEMONIC Stands for 

004RDD JSR Jump to SubRoutine 

B.3.8 Subroutine Return Op ER 

Op-Code MNEMONIC Stands for 

00020R RTS ReTurn from Sub­
routine 

B.4 ASSEMBLER DIRECTIVES 

Op-Code MNEMONIC Stands for 

.EOT End Of Tape 

. EVEN EVEN 

.END mEND 
(m optional) 

Operation 

Push register on the SP stack, 
put the PC in the register: 

DE+(TEMP) - a temporary storage 
register internal 
to processor. 

(SP)-2+ SP 
(REG) + (SP) 
(PC) + REG 
(TEMP)+ PC 

Operation 

Put register contents into PC 
and pop old contents from SP 
stack into register. 

Operation 

Indicates the physical end of 
the source input medium 

Ensures that the assembly loca­
tion counter is even by adding 
1 if it is odd 

Indicates the physical and logi­
cal end of the program and op-

r l 

( 

( 

tionally specifies the entry (~_-
point (m) 

• WORD WORD 
E ,E, •• • 

E,E,... (the void operator) 

• BYTE BYTE 
E, E, ••• 

.ASCII ASCII 
Ixxx • •• xl 

Generates words of data 

Generates words of data 

Generates bytes of data 

Generates 7-bit ASCII charac­
ters for the text enclosed by 
delimiters 

B.S ERROR CODES 

Error Code 

A 

Meaning 

Addressing error. An address within the instruction is in­
correct. 

B ~ounding error. Instructions or word data are being assembled 
at an odd address in memory. 

B-8 

( 



~, 

( 
\ 

( 

( 
" 

Error Code 

D 

I 

L 

M 

N 

P 

Q 

R 

S 

T 

U 

Meaning 

Doubly-defined symbol referenced. Reference was made to a 
symbol which is defined more than once. 

Illegal character detected. Illegal characters which are 
also non-printing are replaced by a ? on the listing. 

Line buffer overflow. Extra characters (more than 7210 ) 
are ignored. 

Multiple definition of a label. A label was encountered 
which was equivalent (in the first six characters) to a _ 
previously encountered label. 

~umber containing an 8 or 9 has a decimal point missing. 

Phase error. A label's definition or value varies from 
one pass to another. 

Questionable syntax. There are missing arguments or the 
Instruction scan was not completed, or a carriage return 
was not followed by a line feed or form feed. 

Register-type error. An invalid use of or reference to a 
register has been made. 

~mbol-table overflow. When the quantity of user-defined 
symbols exceeds the allocated space available in the user's 
symbol table, the assembler outputs the current source line 
with the S error code, then returns to the command string 
interpreter to await the next command string to be typed. 

Truncation error. A number was too big for the allotted 
number of bits; the leftmost bits were truncated. Terror 
does not occur for the result of an expression. 

Undefined symbol. An undefined symbol was encountered 
during the evaluation of an expression. Relative to the 
expression, the undefined symbol is assigned a value of 
zero. 

B.6 INITIAL OPERATING PROCEDURES 

Loading: Use Absolute Loader (see Chapter 6). Make sure that the start 
address of the absolute loader is in the switches when the as­
sembler is loaded. 

Storage Re- PAL-llA exists in 4K and 8K versions. 
quirements: 

Starting Immediately upon loading, PAL-llA will be in control and ini­
tiate dialogue. 

Initial 
Dialogue: Printout 

*S 

Inquiry 

What is the input device of the Source symbolic tape? 

B-9 



ters: 

Each of these questions may be answered by one of the following charac-

. Character 

T 

L 

H 

P 

Answer Indicated 

!eletype keyboard 

~ow-speed reader or punch 

~igh-speed reader or punch 

line ~rinter (8K version only) 

Each of these answers may be followed by other characters indicating 

options: 

Option Typed 

/1 

/2 

/3 

/E 

Function to be Performed 

on pass 1 

on pass 2 

on pass 3 

errors to be listed on the 
Teletype on the same pass 
(meaningful for *B or *L 
only) 

( 

c 

Each answer is· termina ted by typing the RETURN key. A RETURN alone ( 

as answer will delete the function. 

Dialogue during assembly: 

Printout 

EOF ? 

END ? 

EOM ? 

Restarting: 

Response 

Place next tape in reader and type RETURN. A 
.END statement may be forced by typing E followed 
by RETURN. 

Start next pass by placing first tape in reader 
and typing RETURN. 

If listing on HSP or LPT, replenish tape or paper 
and type RETURN. If binary on HSP, start assembly C. 
aqain. -

Type CTRL/P. The initial dialogue will be started 
again. 

B-IO 



( 

( 

( 

APPENDIX C 

TEXT EDITOR, ED-11 

C.1 INPUT/OUTPUT COMMANDS 

R Reads a page of text from input device, and appends it to the 
contents (if any) of the page buffer. Dot is moved to the 
beginning of the page and Marked. (See Band M below.) 

o Opens the input device when the user wishes to continue input 
with a new tape in the reader. 

ARGUMENTS 

~n l L Lists the character 
string 

(n) beginning at Dot and ending with 
nth line feed character. 

(-n) beginning with 1st character fol­
lowing the (n+1)th previous line 
feed and terminating at Dot. 

/ i 
,) 

Punches the character 
string 

(0) beginning with 1st character of 
current line and ending at Dot. 

(@) 

(j) 

bounded by Dot and the Marked 
location (see M) . 

beginning at Dot and ending with 
the last character in the page. 

F Outputs a Form Feed character and four inches of blank tape. 

nT Punches four inches of Trailer (blank tape) n times. 

nN Punches contents of the page buffer (followed by a trailer if 
a form feed is present), deletes the contents of the buffer, and 
reads the next page into the page buffer. It does this n times. 
At completion, Dot and Mark are located at the beginning of the 
page buffer. 

V Lists the entire line containing Dot (i.e., from previous line 
feed to next line feed or form feed. 

< Same as -IL. If Dot is located at the beginning of a line, 
this simply lists the line preceding the current line. 

> Lists the line following the current line. 

C.2 POINTER-POSITIONING COMMANDS 

B Moves Dot to the beginning of the page. 

E Moves Dot to the end of the page. 

M Marks the current position of Dot for later reference in a 
command using the argument @. Certain commands implicitly 
move Mark. 

C-l 



n 
-n 

o 
@ 

/ 

J 

A 

Moves Dot: 

Moves Dot: 

(n) 
( -n) 
(0) 
(@) 
(j) 

(n) 
(-n) 

(0) 
(@) 
(j) 

forward past n characters 
backward past n characters 
to the beginning of the current line 
to the Marked location 
to the end of the page 

forward past n ends-of-lines 
to first character following the (h+l)th 
previous end-of-line 
to the beginning of current line 
to the Marked location 
to the end of the page 

C.3 SEARCH COMMANDS 

nG 
XXXX 

H 
XXXX 

Gets (searches for) the nth occurrence of the specified charac­
ter string on the current page. Dot is set ;immediately after 
the last character in the found text, and the characters from 
the beginning of the line to Dot are listed on the teleprinter. 
If the search is unsuccessful, Dot will be at the end of the 
buffer and a ? will be printed out. 

Searches the wHole file for the next occurrence of the speci­
fied character string. Combines G and N commands. If search 
is not successful on current page, it continues on Next page. 
Dot is set immediately after the last character in the found 
text and the characters from the beginning of the line to Dot 
are listed on the teleprinter. If the Search object is not 
found, Dot will be at the end of the buffer and a ? will be 
printed out. In such a case, all text scanned is copied to 
the output tape. 

C.4 COMMANDS TO MODIFY THE TEXT 

nD 
nC 
xxxx 

-nD 
-nC 
XXXX 

OD 
OC 
XXXX 
@D 
@C 
XXXX 

Character-Oriented 

Delete~} 
Changes 

Deletes} 
Changes 

Deletes} 
Changes. 

Deletes~ 
changes) 

the following 
n characters 

the previous 
n characters 

the current line 
up to Dot 

The character 
string begin­
ning at Dot and 
ending at a pre­
viously Marked 
location. 

Line-Oriented 

nK Kills } 
nX eXchanges 
XXXX 

-nK Kills l 
-nX exchanges} 
XXXX 

OK 
OX 
XXXX 
@K 
@X 
XXXX 

Kills l 
exchanges} 

Kills } 
eXchanges 

the character string 
beginnning at Dot 
and ending at the 
nth end-of-line. 

the character string 
beginning with the 
first character fol­
lowing the (n+l)th 
previous end-of-line 
and ending at Dot. 

the current line up 
to Dot. 

the character string 
beginning at Dot and 
ending at a previ­
ously Marked loca­
tion. 

c 

( 

( 

( 



/ 
\ 

c 

( 

( 
,~ 

~,~ 

/D 
/C 
xxxx 

Character-Oriented 

Deletes) 
Changes 

the character 
string begin­
ning at Dot and 
ending with the 
last character 
of the page. 

/K 
/x 
xxxx 

Line-Oriented 

Kills l_ the character 
eXchanges~ string b~gin­

ning at Dot and 
ending with the 
last character 
of the page. 

I Inserts the specified text. LINE FEED terminates Text Mode and 
XXXX causes execution of the command. Dot is set to the location im~ 

mediately following the last character inserted. If text was 
inserted before the position of Mark, ED-II performs an M com­
mand. 

C.S SYMBOLS 

C.6 

Dot 

t 

RETURN 

+ 

CTRL/FORM 

Location following the most recent character 
operated upon. 

Holding down the CTRL key (not the t key) in 
combination with another keyboard character. 

If in command mode, it executes th€ current 
command; goes into Text Mode if required. 
If in Text Mode, it terminates the current 
line, enters a carriage return and line feed 
into the buffer and stays in text mode. At' 
all times causes the carriage to move to the 
beginning of a new line. (RETURN is often 
symbolized as .I). 

(Typing the LINE FEED key) Terminates Text 
Mode unless the first character typed in Text 
Mode; executes the current command. 

A Form feed which terminates, and thus defines, 
a page of the user's text. 

GROUPING OF COMMANDS 

No Ar9:uments 

V (Verify: 
Lists current line) 

< (Lists previous line) 
> (Lists next line) 
B (Begin) 
E (End) 
F (Form feed) 
H (wHole) 
I (Insert) 
M (Mark) 
0 (Open) 
R (Read) 

Argument n only 

G (Get) 
N (Next) 
T (Trailer) 

C-3 

All Arguments (n,-n,O,@,/) 

A (Advance) 
C (Change) 
D (Delete) 
J (Jump) 
K (Kill) 
L (List) 
P (punch) 
X (eXchange) 



Requiring Line Character 
Text -Mode Oriented Oriented 

C (Change) A (Advance) J (Jump) 
G (Get) K (Kill) D (Delete) 
H (wHole) L (List) 
I (Insert) P (Punch) 
X -( eXchange) X (eXchange) C (Change) 

C.7 OPERATING PROCEDURES 

C.7.1 Loading: Use Absolute Binary Loader (see Chapter 5). 

c.7.2 Storage Requirements: ED-II uses all of core. 

C.7.3 Starting: Immediately upon loading, ED-II will be in 
control. 

C.7.4 Initial Dialogue: 

Program T:lEes User ResEonse 

*I L) (if LSR is to be used for source input) 
H) (if HSR ,is to be used for source input) 

*0 L) (if LSP is to be used for edited output) 
H) (if HSP is to be used for edited output) 

If the output device is the high-speed punch (HSP), Editor enters 

command mode to accept input. Otherwise the sequence continues with: 

LSP OFF? ) (when LSP is off) 

Upon input of ) 

to accept input. 

from the keyboard, Editor enters command mode and is ready 

C.7.S Restarting: Type CTRL/P twice, initiating the normal 
initial dialogue. The text to be edited 
should be loaded (or reloaded) at this time. 

C-4 

r i 

( 
-

( 

( 

( 



( 

( 

( 

APPENDIX D 

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-II ANDODT-IIX 

D.I SUMMARY OF CONTENTS 

ODT indicates readiness to accept commands by typing * or by opening 

a location by printing its contents. 

1- ODT-II 

n/ opens word n 

\ 
RETURN key 

reopens last word opened 

closes open location 

opens next location 

opens previous location 

+ 
t 

of-

$n/ 

. ni G 

niB 

iB 

$B/ 

iP 

niP 

$M/ 

niW 

niE 

n/ (con-

opens relatively addressed word 

opens general register n (0-7) 

goes to word n and starts execution 

sets breakpoint at word n 

removes breakpoint 

opens breakpoint status word 

proceeds from breakpoint, stops again on next 
encounter 

proceeds from breakpoint, stops again on nth encounter 

opens mask for word search 

searches for words which match n in bits specified 
in $M 

searches for words which address word n 

calculates offsets from n to m 
tents) miO 

$S/ 

$P/ 

opens location containing user program's status 
register 

opens location containing ODT'S priority level 

NOTE 

If a word is currently open, new contents for the 
word may be typed followed by any of the commands 
RETURN, +, t, or of-. The open word will be modified 
and closed before the new command is executed. 

D-l 



2. ODT-IIX 

In addition to the commands of the regular version, the extended 

version has the following: 

> 

< 

nirB 

;rB 

;B 

$B/ 

inS 

opens byte 

reopens last byte opened 

opens the absolutely addressed word 

opens the word to which the branch refers 

opens next location of previous sequence 

(r between 0 and 7) sets breakpoint r at word n 

removes breakpoint r 

removes all breakpoints 

opens breakpoint 0 status word. Successive LINE 
FEEDs open words for other breakpoints and single­
instruction mode. 

enables Single-instruction mode (n can have any value 

(~ 

( 

and is not significant) , 

in single-instruction mode, !roceeds with program run ( 
for next n instructions before reentering ODT (if 

niP 

is missing, it is assummed to be 1) 

;S disables Single-instruction mode 

D.2 OPERATING PROCEDURES 

For assembling and loading the source tapes of both ODT versions, 

see Section 5.6.3 The following describes use of the supplied 

binary tapes. 

1. Loading 

Both ODT versions are loaded by using the Absolute Loader (see Sec­

tion 6.2.2). ODT-ll is loaded into core starting at location 13060, 

and requires about 500 locations of core.. ODT-IIX is loaded into 

core starting at location 12150 and requires about 800 locations of 

core. 

D-2 

( 

( 



( 

( 

( 

2. Starting 

Each ODT version is dutomatically started by the Absolute Loader at 

its start address immediately after loading. 

3. Restarting 

There are two ways of restarting ODT: 

1. Restart at start address +2 

2. Reenter at start address +4 

To restart, key in the start address +2 (13062 for ODT-ll or 12152 

for ODT-IIX) and press the START switch. All previously set break­

points will be removed, registers RO-R6 will be saved, and aDT will 

assume that the trace trap vector has been initialized. 

To reenter, key in the start address +4 (13064 for aDT-ll or 12154 

for ODT-IIX) and press START. All previously set breakpoints and 

internal registers will be saved. 

D-3 





( 

( 

( 
\, 

( 

APPENDIX E 

LOADING AND DUMPING CORE MEMORY 

E.l The BOOTSTRAP Loader 

1.1. Loading the Bootstrap Loader 

The Bootstrap Loader should be toggled into the highest core memory 

bank. 

xx7744 
xx7746 
xx7750 
xx7752 
xx7754 
xx7756 
xx7760 
xx7762 
xx7764 
xx7766 
xx7770 
xx7772 
xx7774 
xx7776 

016701 
000026 
012702 
000352 
005211 
105711 
100376 
116162 
000002 
xx7400 
005267 
177756 
000765 
yyyyyy 

xx represents the highest available memory bank. For example, the first 

location of the loader would be one of the following, de~ending on memory 

size, and xx in all subsequent locations would be the same as the first. 

Location Memor~ Bank Memor:i Size 

017744 0 4K 
037744 1 8K 
057744 2 12K 
077744 3 16K 
117744 4 20K 
137744 5 24K 
157744 6 28K 

The contents of location xx7776 (yyyyyy) in the Instruction col~n 

above should contain the device status register address of the paper tape 

reader to be used when loading the bootstrap formatted tapes specified 

as follows: 

Teletype Pa~er Tape Reader 

High-speed Paper Tape Reader 

E-l 

177560 

177550 



( 

( 

11-0068 

Figure E-l Loading and Verifying the Bootstrap Loader 

( 

E-2 



( 

( 

2. Loading with the Bootstrap Loader 

------I see FigureE-l 

Place Bootstrap 
Tope in 
specified reader 

---------- Code 351 must be 
over reader sensors 

Tope Reads in 

and stops - - - - - -I see Figure '-5 
At end of Data _ 

11-0067 

Figure E-2. Loading Bootstrap Tapes into Core 

E.2 THE ABSOLUTE LOADER 

1. Loading the Absolute Loader 

The Bootstrap Loader is used to load the Absolute Loader into core. 

(See Figure E-2.) The Absolute Loader occupies locations xx7474 through 

xx7743, and its starting address is xx7500. 

2. Loading with the Absolute Loader 

able: 

When using the Absolute Loader, there are three types of loads avail­

normal, relocated to specific address, and continued relocation. 

Optional switch register settings for the three types of loads are 

listed below. 

Switch Register 
Type of Load Bits 1-14 Bit 0 

Normal (ignored) o 

E-3 



Type of Load 

Relocated - continue loading 
where left off 

Relocated - load in specified 
area of core 

E.3 CORE MEMORY DUMPS 

The two dump programs are 

switch Register 

Bits 1-14 Bit 0 

o 1 

nnnnn 1 
(specified address) 

DUMPTT, which dumps the octal representation of the 
contents of all or specified portions of core onto 
the teleprinter, low-speed or high-speed punch, or 
line printer. 

DUMPAB, which dumps the absolute binary code of the 
contents of specified portions of core onto the low­
speed (Teletype) or high-speed punch. 

Both dumps are supplied on punched paper tape in bootstrap and 

absolute binary formats. The following figure summarizes loading 

and using the Absolute binary tapes. 

E-4 

( 

( 

( 

c 



( 

( 
( 

"--

( 

No Load ABS 
~---~ LOADER -ise" Fig_ E-2 

Set ENABLE/HALT to HALT 

Set xx7776 to s ecify reader-

in Reader 

HSR=177550 
LSR=177560 
XX is HIGH­
EST CORE 
MEMORY BANK 

Press LOAD ADDR 

Normal 

(This is 
necessary 
only if 
using a 
reader 
different 
from that 
used by 
the 
bootstrap 
loader. ) 

Set bit 0 of SR ~------< ~-------------~lear Bit 0 of SR 
Specify ADDR in­ Specific 

ADDR bits 1-14 

Relocation 

Set Bit 0 of SR Clear Bits 1-14 

Yes 
">----~ Set ENABLE/HALT to ENABLE 

>----~ Reload Loader -1----4 

Yes 
Place next tape~-~ 

........ ---~ in Reader 

Figure E-3. Loading with the Absolute Loader 
E-5 



See Fig. E-11 

Toggle in No 
Boot Loader ~------~ 

SR= 
SR=177550 
x is highe$t 
ore memory bank 

No 

See Fig. E~21' 

Load ABS 
Loader 

See Fig. E-2!- - - -.a....;;;;.~;.;....;;;...y;.;.;. ...... .;;;..;..;..Io..;;;.J ~=::.;..-=-:;::.:;~==:..I. - f See Fig .E-3 

Figure E-4. 

Dumping Using 

TTY 
or 

LSP HSP 

Set SR 177564 

LP 

SetSR to 177514 

DUMPAB or DUMPTT 

E-6 

trans-

AD DR 

( 

( 

( 

>-

( 



c-' 

( 

c 

( 

-'J 

( 

Set SR to last 
Byte Address 
DUMPed 

Core is DUMPed 

SET SR to 
Transfer Addres 
(TRA) 

CONTinue 

Set SR to TRA-

CONTinue 

TRA block is 
dumped 

Done 
~\~ 

Done \ 

An odd transfer address 
causes absolute loader 
to halt 

Figure E-4 (continued). Dumping Using DUMPAB or DUMPTT 

E-7 





( 

( 

( 

( 

APPENDIX F 

INPUT/OUTPUT PROGRAMMING, lOX 

F.1 INSTRUCTION SUMMARY 

1. Format: 

lOT 

.WORD (an address) 

.BYTE (a command code, a slot number of a device) 

.WORD (done address) iREADR AND WRITR ONLY 

2. Command Codes: 

INIT = 1 

RESET = 2 

RSTRT = 3 

WAITR = 4 

SEEK = 5 

READ = 11 

WRITE = 12 

READR = 13 

WRITR = 14 

F.2 PROGRAM FLOW SUMMARY 

1. Set up buffer header: 

BUFFER 
HE.~DER 

Location 

(Buffer and 
! Buffer+1 I Buffer+2 

Buffer+3 

Buffer+4 and 
I...Buffer+5 

Buffer+6 

Contents 

Maximum number of data bytes (unsigned 
integer) 

Mode of data (byte) 

Status of data (byte) 

Number of data bytes involved in trans­
fer (unsigned integer) 

Actual data begins here. 

F-1 



Mode Byte Format 

Bits 7 6 5 4 3 2 1 o 

1= No Echo Unfor- Binary 
matted 

0= Echo Format- ASCII 
ted 

Coding Mode Byte 

Formatted ASCII 

Formatted Binary 

Unformatted ASCII 

Unformatted Binary 

o 
1 

2 

3 

(or 200 to suppress echo) 

(or 202 to suppress echo) 

Status Byte Format 

7 6 5 4 3 2 

1= 1= 1= I SEE CODES I 

DONE EOM EOF j i I 

NON-FATAL ERRORS 

Coding Non-Fatal Errors 

= 
= 

checksum error (formatted binary) 

truncation of a long line 

= an improper mode 

2. Assign devices to slots in Device Assignment Table: 

(RESET and INIT commands) 

Slot numbers are in the range 0 to 7. 

Device Codes: 

KBD = 1 

TTY = 2 

LSR = 3 

LSP = 4 

HSR = 5 

HSP = 6 

LPT = 10 

1 

3. Use a data transfer command to initiate the transfer. 

F-2 

I 

I 

o 

Bits 

=1 

=0 

( 

( 

( 

( 



(-

( 

/ 

\ 

F.3 FATAL ERRORS 

Fatal errors result in a jump to 40 8 with RO set to the error code. Rl 

is set to the value of the PC for error code O. Errors 1-5 cause Rl to 

be set to an lOT argument or to the instruction following the arguments. 

Fatal Error Code 

0 

1 

2 

3 

4 

5 

Reason 

Illegal Memory Reference, SP overflow, illegal 
instruction 

Illegal command 

. Slot out of range 

Device out of range 

Slot not inited 

Illegal data mode 

F-3 





( 

'. 

APPENDIX G 

SUMMARY OF FLOATING POINT 
MATH PACKAGE, FPMP-II 

This appendix lists all the global entry points of FPMP-II and 

provides a brief description of the purposes of each. Sections G.I 

and G.2 are for reference when it is desired to call FPMP-II routines 

directly (i.e., without the use of the TRAP handler). Entry names 

preceded by an octal number can be referenced via the TRAP handler. 

The number is the "routine number" referred to in the FPMP-II manual. 

If the number is enclosed in parentheses, the routine cannot be 

accessed by the present TRAP handler, but has been assigned a number 

( for future use. For a more detailed explanation of the Floating 

c 

( 

Point Math Package, refer to the FPMP-II User's Manual DEC-II-NFPMA-A-D. 

Examples of the calling conventions are: 

POLISH MODE: 

J5RR: 

XX: 

JSR R4,$POLSH 
$subrl 
$subr2 

$subrn 
• WORD .+2 

JSR 
BR 
.WORD 
. WORD 

. WORD 

R5,subr 
XX 
argl 
arg2 

argn 

ienter Polish mode 
icall desired subroutines 

icall last subroutine desired 
;leave Polish mode 

icall desired subroutine 

isubroutine argument address 

ilast argument 
ireturn point 

G-I 



JPC: 

push args onto stack 
JSR PC,subr 

G.l OTS ROUTINES 

These are the routine taken from the FORTRAN operating time system. 

The codes used in the following table are: 

S 

D 

SD 

Octal 

NAME 

$ADD 

$ADR 

AINT 

ALOG 

= Routine is 
package. 

= Routine is 
package. 

= Routine is 

codes shown in 

OCTAL 
CODE PKG 

14 D 

12 S 

26 S 

53 S 

included in the 

included in the 

included in both 

parentheses are 

# OF 
ARGU 

2 

2 

1 

1 

MODE 

Polish 

Polish 

J5RR 

J5RR 

standard single precision (2-word) 

standard double precision (4-word) 

standard packages. 

not yet implemented. 

DESCRIPTION 

The double precision add routine. 
Adds the top stack item (4-words) 
to the second item (4-words) and 
leaves the four word sum in their 
place. 

The single prec1s10n add routine. 
Same as $ADD except it uses 2 word 
numbers. 

Returns sign of argument * greatest 
real integer = absolute value of 
the argument in RO,Rl. 

Calculates natural logarithm of its 
single argument and returns a two 

(I 

( 

( 

( 

word result in RO ,Rl. • 

ALOGIO 54 S 

ATAN 42 S 

1 J5RR 

1 J5RR 

G-2 

Same as ALOG, except calculates 
base-IO logarithm. 

Returns the arctangent of its 
argument in RO,Rl. 



(- NAME 

ATAN2 

$CMD 

( 

( 

( 
~\ 

I, 
$CMR 

COS 

DATAN 

DATAN2 

DBLE 

$DCI 

$DCO 

OCTAL 
CODE PKG 

(43) S 

16 D 

17 

37 

44 

(45 ) 

(34) 

(57) 

( 61) 

S 

S 

D 

D 

SD 

SD 

# OF 
ARGU 

2 

2 

2 

1 

1 

2 

1 

4 

5 

MODE 

J5RR 

Polish 

Polish 

J5RR 

J5RR 

J5RR 

J5RR 

JPC 

JPC 

G-3 

DESCRIPTION 

Returns ARCTAN(ARG1/ARG2) in RO,Rl. 

Compares top 4 word items on the 
stack, flushes the two items, and 
returns the following condition 
codes: 
4 (SP) @SP 
4(SP) = @SP 
4(SP) @SP 

N=l, Z=O 
N=O,Z=l 
N=O,Z=O 

Same as $CMD except it is for 2 
word arguments. 

Single precision version of DCOS. 

Double precision version of ATAN. 

Double precision version of ATAN2. 

Returns in RO-R3 the double 
precision equivalent of the single 
precision (two word) argument. 

ASCII to double conversion. 
Calling sequence: 

Push address of start of ASCII 
field. 
Push length of ASCII field in 
bytes. 
Push format scale D (from W.D) 
position of assumed decimal 
point (see FORTRAN manual) . 
Push P format scale (see 
FORTRAN manual) . 
JSR PC, $DCI. 

Returns 4 word result on top of 
stack. 

Double precision to ASCII 
conversion. Calling sequence: 

Push address of start of ASCII 
field. 
Push length in bytes of ASCII 
field (W part of W.D) 
Push D part of W.D (position of 
decimal point) . 
Push P scale. 
Push 4 word value to be convert~ 
ed, lowest order word first. 
JSR PC,$DCO. 



NAME 

DCOS 

DEXP 

$DI 

$DINT 

DLOG 

DLOG10 

$DR 

DSIN 

DSQRT 

$DVD 

$DVI 

$DVR 

OCTAL 
CODE 

41 

52 

(11) 

(76) 

55 

56 

(6) 

40 

47 

23 

(24) 

25 

PKG 

D 

D 

SD 

D 

D 

D 

D 

D 

D 

S 

# OF 
ARGU 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

MODE 

J5RR 

J5RR 

Polish 

Polish 

J5RR 

J5RR 

polish 

J5RR 

J5RR 

Polish 

Polish 

Polish 

DESCRIPTION 

Calculates the cosine of its double 
precision argument and returns the 
double precision result in RO-R3. 

Calculates the exponential of its 
double precision argument, and 
returns the double precision result 
in RO-R3. 

Converts double precision number on 
the top of the stack to integer. 
Leaves result on stack. 

OTS internal function to find the 
integer part of a double precision 
number. 

Double precision (4 word) version 
of ALOG. 

Double precision (4 word) version 
of ALOG10. 

Replaces the double precision item 
at the top of the stack with its 
two word, rounded form. 

Calculates the sine of its double 

( 

precision argo and returns the ( 
double precision result in RO-R3. , 

Calculates the square root of its 
double precision argo. and returns 
the double precision result in 
RO-R3. 

The double prec1s10n division 
routin~. Divides the second 4~word 
item on the stack by the top item 
and leaves the quotient in their ( 
place. 

The integer division routine. 
Calculates 2(SP)/@SP and returns 
the integer quotient on the -top of 
the stack. 

The single precision division 
routine. Same as $DVD, but for 2 
word floating point numbers. 

G-4 

c 



( 

( 

( 

., 

( 

NAME 

$ECO 

EXP 

$FCALL 

$FCO 

FLOAT 

$GCO 

$ICI 

$ICO 

IDINT 

$ID 

IFIX 

OCTAL 
CODE 
(62) 

51 

(64 ) 

(32) 

(63) 

(65) 

(67) 

(31) 

(5) 

(35) 

PKG 

SD 

S 

S 

SD 

SD 

so 

# OF 
ARGU 

5 

1 

5 

1 

5 

2 

3 

1 

1 

1 

MODE 

JPC 

J5RR 

JPC 

J5RR 

JPC 

JPC 

JPC 

J5RR 

Polish 

J5RR 

G:-5 

DESCRIPTION 

Single precision to ASCII 
conversion according to E format. 
Same calling sequence as $DCO 
except that a 2-word value is to be 
converted. 

Single precision version of DEXP. 
Returns result in RO,Rl. 

Internal OTS routine. 
Same as $ECO except uses F format 
conversion. 

Returns in RO-Rl, the real 
equiv:alent of its integer argument. 

Same as $ECO except uses G format 
conversion. 

ASCII to integer conversion 
calling sequence: 
Push address of start of ASCII 
field. 
Push length in bytes of ASCII 
field. 
JSR PC, $ICI 
Returns with integer result on top 
of stack. 

Integer to ASCII conversion. 
Calling sequence: 
Push address of ASCII field. 
Push length in bytes of ASCII 
field. 
Push integer value to be converted 
JSR PC,$ICO 
Error will return with C bit set 
on. RO-R3 destroyed. 

Returns sign of arg * greatest 
integer <= largl in RO. Arg is 
double precision. 

Convert full word argument on the 
top of the stack to double 
precision and return result as top 
4-words of stack. 

Returns the truncated and fixed 
real argument in RO. 



OCTAL 41= OF 
NAME CODE PKG ARGU MODE DESCRIPTION ( 

INT (30 ) 1 J5RR Same as IDINT for single precision 
args. 

$INTR (27 ) S 1 Polish Same function as AINT, but called 
in Polish mode with argument and 
returns result on the stack. 

$IR (4) SD 1 Polish Convert full word argument on the '" top of the stack to single pre-
cision and return result as top 
2-words of stack. 

$MLD 22 D 2 Polish Double precision multiply. 
Replaces the top two doubles on 
the stack with their product. 

$MLI (20) 2 POlish Integer multiply. Replaces the top 
2 integers on the stack with their ( full word product. 

$MLR 21 S 2 Polish Single precision multiply. 
Replaces the top two singles on the 
stack with their product. 

$NGD (3) SD 2 Polish Negate the double precision number 
on the top of the stack. 

$NG! (1) SD 1 Polish Negate the integer on the top of 
( the stack. 

$NGR (2) SD 1 Polish Negate the single precision number 
on the top of the stack. 

$OCI (66) 2 JPC ASCII to octal conversion. Same 
call as $ICI. 

$OCO (70 ) 3 JPC Octal to ASCII conversion. Some 
call as $ICO. 

$POr.SE: SD Called whenever it is desired to ( enter Polish mode from normal 
in-line code. It must be called 
via a JSR R4,$POLSH. 

$POPR3 D Polish Internal routine to pop 2-words 
from the stack and place them into 
RO ,In. 

$POPR4 D Polish Internal routine to pop 4-words 
from the stack and place them in 
RO-R3. 

( 

G-6 



NAME 
(_. $POPR5 

( 

( 

$PSHRI 

.j'-. 
$PSHR2 

$PSHR3 

$PSHR4 
<: $PSHR5 

$RCI 

$RD 

$RI 

$SBD 

$SBR 

( SIN 
SNGL 

( 

SQRT 

TANH 

OCTAL 
CODE PKG 

(60) 

(7) 

(10) 

15 

13 

36 

(33) 

46 

50 

D 

SD 

SD 

SD 

SD 

SD 
SD 

SD 

D 

S 

S 

S 

S 

# OF 
ARGU 

4 

1 

1 

1 

1 

MODE 

Polish 

Polish 

Polish 

Polish 

Polish 

Polish 

JPC 

Polish 

Polish 

Polish 

Polish 

J5RR. 

J5RR 

J5RR 

J5RR 

G-7 

DESCRIPTION 

Internal routine to pop 4-words 
from the stack and place them in 
registers RO-R3. 

Internal routine to push the 
contents of RO onto the stack. 

Same as $PSHRI. 

Push RO,Rl onto stack. 

Push RO-R3 onto stack. 

Same as $PSHR4. 

ASCII to single preC1S1on 
conversion. .Same calling sequence 
as $DCI. Returns 2-word result on 
top of stack. 

Converts the single precision 
number on the top of the stack to 
double precision format. Leaves 
result on stack. 

Converts single precision number on 
the top of the stack to integer. 
Leaves result on stack. 

The double precision subtract 
routine. Subtracts the double 
precision number on the top of the 
stack from the second double 
precision number on the stack and 
leaves the result on the top of the 
stack in their place. 

Same as $SBD but for single 
precision. 

Single precision version of DSIN. 

Rounds double precision argument to 
single precision. Returns result 
in RO,Rl. 

Single precision version of DSQRT. 

Single precision hyperbolic tangent 
function. Returns (EXP(2*ARG}-1)/ 
(EXP (2*ARG) +1) in RO ,Rl. 



G.2 NON-OTS ROUTINES 

These routines are written especially for FPMP-ll and should not be (~ 
called directly by the user. 

OCTAL 
NAME CODE PKG DESCRIPTION 

$ERR SD Internal error handler. 

$ERRA SD Similar to $ERR. 

$LDR 71 S Load FLAC, single precision. 

$LDD 72 D Load FLAC, double precision. 

$STR 73 S Store FLAC, single precision. 

$STD 74 D Store FLAC, double precision. 

TRAPH SD The TRAP handler routines and 
tables. 

G.3 ROUTINES ACCESSED VIA .TRAp HANDLER 

The following is a table of the FPMP-ll routines which can be accessed 

via TRAPH; the trap handler. Each routine name (entry point) is 

preceded by its TRAP code number to be used to access it, and followed 

by a brief description of its operation when called via the TRAP 

handler. Those entries which are preceded by an asterisk (*) perform 

operations only on the FLAC, and address no operands. For example, a 

TRAP call to the single precision square root routine can be coded as 

follows: 

TFAP 46 

The net effect of the above TRAP instruction is to replace the 

contents of the FLAC with its square root and then set the condition 

codes to reflect the result. Note that since the FLAC is implicitly 

addressed in this instruction, the TRAP call supplies no other address. 

For such a TRAP call, the addressing mode bits (bits 6 and 7 of the 

~RAP instruction) are igno~ed. 

G-8 

( 

( 

( 

( 



.( 

( 

( 

( 

( 

All entries not marked by an asterisk require an operand when called. 

The operand is addressed in one of the 4 addressing modes explained in 

section 3.1.1. of the FPMP-11 User's Manual. The addressing mode is 

specified in bit 6-7 of the TRAP instruction. 

("Operand" is the contents of the location addressed in the TRAP call.) 

* 

* 

* 
* 

* 
* 
* 

* 
* 
* 

OCTAL 
CODE NAME 

14 $ADD 

12 $ADR 

26 AINT 

53 ALOG 

54 ALOG10 

42 

16 

17 

37 

44 

52 

55 

56 

41 

ATAN 

$CMD 

$CMR 

COS 

DATAN 

DEXP 

DLOG 

DLOG10 

DCOS 

DESCRIPTION 

Double precision addition routine. Adds 
operand to the FLAC. Assumes 4-word 
operand. 

Single precision addition routine. Adds 
operand to the FLAC. Assumes 2-word 
operand. 

Replaces contents of the FLAC by its integer 
~art. SIGN (FLAC) * greatest integer <= 
IFLACI. Assumes 2-word argument in FLAC. 

Replaces contents of the FLAC by its natural 
logarithm. Assumes 2-word argument in FLAC. 

Same as ALOG, except calculates base-10 log. 

Replaces contents of the FLAC by its 
arctangent. Assumes 2-word argument in 
FLAC. 

Compares operand to the contents of the 
FLAC, and returns the following condition 
codes. 

FLAC<operand, N=l,Z=O 
FLAC=operand, N=O,Z=l 
FLAC>operand, N=O,Z=O 

Assumes 4-word operands. 

Same as $CMD, but for 2-word operands. 

Same as DCOS, but for 2-word argument. 

Same as ATAN, but for 4-word argument. 

Replaces the contents of the FLAC by its 
exponential. Assumes 4-word argument in 
the FLAC. 

Same as ALOG, but for 4-word argument. 

Same as ALOG10, but for 4-word argument. 

Replaces the contents of the FLAC by its 
cosine. AsSumes 4-word argument in the 
FLAC. 

G-9 



* 

* 

* 

* 
* 

* 

OCTAL 
CODE NAME 

40 DSIN 

47 

23 

25 

51 

72 

71 

22 

21 

15 

13 

36 

46 

73 

74 

50 

DSQRT 

$DVD 

$DVR 

EXP 

$LDD 

$LDR 

MLD 

$MLR 

$SBD 

$SBR 

SIN 

SQRT 

$STR 

$STD 

TANH 

DESCRIPTION 

Same as DCOS, but calculates sine instead 
of cosine. 

Replaces the contents of the FLAC by its 
square root. Assumes 4-word argument in the 
FLAC. 

Double precision division routine. Divides 
the FLAC by the operand and stores the 
result in the FLAC. Assumes 4-word operands. 

Same as $DVD, but for 2-word operands. 

Same as DEXP, but for 2-word argument. 

Same as $LDR, but assumes 4-word operand. 

Replaces the contents of the FLAC by the 
operand. Assumes 2-word operand. 

Double precision multiplication routine. 
Multiplies the contents of the FLAC by the 
operand and stores the result in the FLAC. 
Assumes 4-word operands. 

Same as $MLD, but for 2-word operands. 

The double precision subtraction routine. 
Subtracts the operand from the contents 
of the FLAC. Assumes a 4-word operand. 

Same as $SBD, but for 2-word operand. 

Same as DSIN, but for 2-word argument. 

Same as DSQRT, but for 2-word argument. 

Stores the contents of the FLAC into the 
operand location. The contents of the 
FLAC are unchanged. 

Same as $STR, but assumes 4-word operand 
location. 

Replaces the contents of the FLAC by its 
hyperbolic tangent. Assumes 2-word 
argument. 

G-IO 

( 

( 

( 

c 



( 

( 
\ 

( 

APPENDIX I 

ASSEMBLING THE PAL-llA ASSEMBLER 

The following procedures are for assembling the PAL-II Assembler 

source tapes. An !ilK version of the PAL-llA (V007A) Assembler 

is required, thus also requiring at least an 8K PDP-II system. 

The Assembler consists of two programs. The first program, 

on tape 1, is a memory clear program and is very short 

(DEC-ll-UPLAA-A-PAl). The second program is the Assembler proper, 

and consists of eleven ASCII tapes (DEC-ll-UPLAA-A-PA2-PA12). 

They are assembled as follows: 

1. Generate a sufficient amount of blank leader tape. 

2. Assemble the memory clear program source tape 
(DEC-ll-UPLAA-A-PAl) and assign the binary output 
to the high-speed punch. For example, PAL-llA's 
initial dialogue to specify the 2-pass assembly 
would be: 

*S H 
*B HIE 
*L 
"Frf 

END? 

(PAl assembly - 1st pass) 

(PAl assembly - 2nd pass) 
(No errors - Do not remove 
the binary tape from the punch.) 

3. Assemble the rest of the Assembler's source tapes 
(PA2 - PA12) in numerical sequence. 

Assign the binary output to the high-speed punch. For 
example, the initial dialogue should be answered as 
follows: 

*S H 
*B HIE 
*L 
*T 
EOF ? (Enter tape PA2 for 1st pass) 
EOF ? (End of tape PA2, enter PA3) 
EOF ? (End of tape PA3, enter PA4) 
EOF ? (End of tape PA4, enter PAS) 
EOF ? (End of tape PAS, enter PA6) 

I-I 



EOF ? (End of tape PA6, enter PA7) 
EOF ? (End of tape PA7, enter PA8) 
EOF ? (End of tape PA8, enter PA9) 
EOF ? (End of tape PA9, enter PAlO) 
EOF ? (End of tape PAlO, enter PAll) 
EOF ? (End of tape PAll, enter PA12) 
MAXC13 = ****** SIMBC = ****** (End of first pass) 
END ? 
EOF ? (Enter tape PA2 for 2nd pass) 
EOF ? (End of tape PA2, enter PA3) 
EOF ? (End of tape PA3, enter PA4) 
EOF ? (End of tape PA4, enter PAS) 
EOF ? (End of tape PAS, enter PA6) 
EOF ? (End of tape PA6, enter PA7) 
EOF ? (End of tape PA7, enter PA8) 
EOF ? (End of tape PA8, enter PA9) 
EOF ? (End of tape PA9, enter PAlO) 
EOF ? (End of tape PAlO, enter PAll) 
EOF ? (End of tape PAll, enter PA12) 
%¢0'¢fJ9' ERRORS (End of 2nd pass) 
C 
*S 

Note that at the end of the first pass there are two 

undefined symbols: MAXC13 and SIMBC. These undefined symbols 

are resolved so that there are no errors reported during the 

second pass. 

Be sure that there is sufficient blank trailer tape on 

the binary output tape before removing the assembled tape from 

the punch. 

Normally, using high-speed paper tape input and output, 

this process requires about 4S minutes. If a symbol table and 

listing are requested, there will be about750 symbols and about 

4S00 lines of listing. 

I-2 

.L--

( , 

" 

( 

( 

( 



( 

APPENDIX H 

TAPE DUPLICATION 

Duplication of paper tapes can be accomplished via low- or high­

speed I/O devices by toggling (as with the Bootstrap Loader) the follow­

ing program directly into memory through the Switch l€gister. (Refer to 

Section G.l.l in Chapter 6 if necessary, for toggling proQedure.) 

1. Turn on appropriate device switches and place tape in 
desired reader. 

2. Set ENABLE/HALT switch to HALT. 

3. Set Switch Register to the desired starting address 
and press LOAD ADDR. 

4. Set Switch Register to each value listed in the CONTENTS 
column below, lifting the DEP switch after each setting. 
(Addresses are automatically incremented.) The desired 
input device (either ~ow- or ~igh-~eed ~eader) and out­
put device (~ow- or ~igh-~eed ~unch) are specified in 
the last two words. 

ADDRESS CONTENTS 

0 016700 
2 000024 
4 016701 
6 000022 

10 005210 
12 105710 
14 100376 
16 105711 
20 100376 
22 022021 
24 111011 
26 000764 
30 177560 (LSR) or 177550 
32 177564 (LSP) or 177554 

5. Set Switch Register to starting address specified in 
3 above and press LOAD ADDR. 

6. Set ENABLE/HALT switch to ENABLE. 

7. Press START switch. 

NOTE 

This program is recommended as a simple way of 
duplicating the system tapes. However, for ex­
tensive tape duplication, the program shown in 
section 7.8 is recommended. 

H-l 

(HSR) 
(HSP) 





r 
Abbreviation 

ABS 
,," AID 

ADC 

ADRS 

( ASCII 

ASL 

ASR 
/ 
( 

B 

BAR 

BBSY 

BCC 

BCS 

BEQ 

C-, BG 

BGE 

BGT 

BHI 

BHIS 

BIC 

BIS 

BIT 

BLE 

( BLOS 

BLT 

BMI 

BNE 

BPL 

BR 

BRD 
c-

BRX 

BSP 

BSR 

BSY 

BVe 

BVS 

( 
", 

APPENDIX J 

STANDARD PDP-II ABBREVIATIONS 

Definition Abbreviation 

absolute CBR 

analog-to-digital CLC 

add carry CLK 

address CLN 

American Standard Code CLR 

for Information Inter- CLV 

change CLZ 

arithmetic shift left CMP 

arithmetic shift right CNPR 

automatic send/receive CNTL 

COM 

byte COND 

bus address register CONS 

bus busy CaNT 

branch if carry clear 

branch if carry set CP 

branch if equal CSR 

bus grant 

branch if greater or equal D 

branch if greater than D/A 
branch if higher DAR 

branch if higher or same DATI 

bit clear DATIP 

bit set DATa 

bit test DATOB 

branch if less or equal DBR 

branch if lower or same DCDR 

branch if less than DE 

branch if minus DEC 

branch if not equal 

branch if plus DEL 

branch DEP 

bus register data DEPF 

bus request DlV 

back space DMA 

bus shift register DSEL 

back space record DST 

busy DSX 

branch if overflow clear 

branch if overflow set 

J-I 

Definition 

console bus request 

dear carry 

clock 

clear negative 

clear 

clear overflow 

clear zero 

compare 

console nonprocessor request 

control 

complement 

condition 

console 

contents 

continue 

central processor 

control and status register 

data 

digital-to-analog 

device address register 

data in 

data in. pause 

data out 

data out. byte 

data buffer register 

decoder 

destination effective address 

decrement 

Digital Equipment Corp. 

delay 

deposit 

deposi t flag 

divide 

direct memory acc!!ss 

device select 

destination 

display. X-defledion register 



~ 

( 

Abbreviation Definition Abbreviation Definition 

EMT emulator trap LSB least significant bit 

ENB enable LSBY least significant byte 

EOF end-of-file LSD least significant digit 

EOM end-of-medium " 
ERR error MA memory address 

EX external MAR memory address register 

EXAM examine MBR memory buffer register 

EXAMF examine flag MEM memory 

EXEC execute ML memory location 

EXR external reset MOV move 

MSB most significant bit 

F flag (part of signal name) MSBY most significant byte ( 
FCTN function MSD most significant digit 

FILO first in, last out MSEL memory select 

FLG flag MSYN master sync 

GEN generator ND negative driver 

NEG negate 

INDIVR integer divide routine NOR normalize 

INC increment NPG nonprocessor grant 
( increase NPR nonprocessor request 

INCF increment flag NPRF nonprocessor request flag 

IND indicator NS negative switch 

INH inhibit 

INIT initialize ODT octal debugging technique 

INST "instruction OP operate 

INTR interrupt operation 

INTRF in terrupt flag OPR operator 

I/O input/output operand ( 
lOT input/output trap 

lOX input/output executive routine PA parity available 

IR instruction register PAL program assembly language 

IRD instruction register decoder PB parity bit 

ISR instruction shift register PC program counter 

PD positive driver 

JMP jump PDP programmed data processor 
-, 

iSR jump to subroutine PERIF peripheral 

PGM program 

LIFO last in, first out PP paper tape punch 

LKS line time clock status register PPB paper tape punch buffer register 

LOC location PPS paper tape punch status register 

LP line printer PR paper tape reader 

( 
'-"-

J-2 



J-3 





( 

c 

( 

APPEl\I1HX K 

CONVERSION TABLES 

OCTAL-DECIMAL INTEGER CONVERSIONS 

0000 
to 

0777 
(Octal) 

0000 
to 

0511 
(Decimal 

Octal Decimal 
10000· 4096 
20000· 8192 
30000·12288 
40000 . 163M 
50000 . 20480 
60000 . ·24576 
70000 . 28672 

) 

1000 
to 

1777 
(Octal) 

0512 
to 

1023 
(Decimal) 

0 

0000 0000 
0010 0008 
0020 0016 
0030 0024 
0040 0032 
0050 0040 
0060 0048 
0070 0056 

0100 0064 
0110 0072 
0120 0080 
0130 0088 
0140 10096 
0150 0104 
0160 0112 
0170 0120 

0200 0128 
0210 0136 
0220 0144 
0230 0152 
0240 0160 
0250 e,168 
0260 0176 
0270 0184 

0300 0192 
0310 0200 
0320 0208 

10330' 0216 
i 0340 I 0224 
0350 0232 

10360 I 0240 
0370 0248 

0 

1000 0512 
1010 0520 
1020 0528 
1030 I 0536 
1040' 0544 
1050 0552 
1060 0560 
1070 0568 

1100 0576 
1110 0584 
1120 0592 
1130 0600 
1140 0608 
1150 0616 
1160 0624 
1170 0632 

1200 0640 
1210 0648 
1220 0656 
1230 0664 
1240 0672 
1250 0680 
1260 0688 
1270 0696 

1300 0704 
1310 0712 
1320 0720 

1
1330 

0728 
1340 0736 
13~0 0744 
i 1360 0752 

1370 0760 

I 2 3 4 

0001 0002 0003 0004 
0009 0010 0011 0012 
0017 0018 0019 0020 
0025 0026 0027 0028 
0033 0034 0035 0036 
0041 0042 0043 0044 
0049 0050 0051 0052 
0057 0058 0059 0060 

0065 0066 0067 0068 
0073 0074 0075 0076 
0081 0082 0083 0084 
0089 0090 0091 0092 
0097 0098 0099 0100 
0105 0106 0107 0108 
0113 0114 0115 0116 
0121 0122 0123 0124 

0129 0130 0131 0132 
0137 0138 0139 0140 
0145 0146 0147 0148 
0153 0154 0155 0156 
0161 0162 0163 0164 
0169 0170 0171 0172 
0177 0178 0179 0180 
0185 0186 0187 0188 

0193 0194 0195 0196 
0201 0202 0203 0204 
0209 0210 0211 0212 
0217 0218 0219 0220 
0225 0226 0227 0228 
0233 0234 0235 0236 
0241 0242 0243 0244 
02411 0250 0251 0252 

1 2 3 4 

0513 0514 0515 0516 
0521 0522 0523 0524 
0529 0530 0531 0532 
0537 0538 0539 0540 
0545 0546 0547 0548 
0553 0554 0555 0556 
U561 0562 0563 0564 
0569 0570 0571 0572 

0577 0578 0579 0580 
0585 0586 0587 0588 
0593 05i4 0595' 0596 
0601 0602 0603 0604 
0609 0610 0611 0612 
0617 0618 0619 0620 
0625 0626 0627 0628 
0633 0634 0635 0636 

0641 0642 0643 0644 
0649 0650 0651 0652 
0657 0658 0659 0660 
0665 0666 0667 0668 
0673 0674 0675 0676 
0681 0682 0683 0684 
0689 0690 0691 0692 
0697 0698 0699 0700 

0705 0706 0707 0708 
071S 0714 0715 0716 
0721 0722 0723 0724 
0729 0730 0731 0732 
0737 0738 0739 0740 
074~ 0746 0747 0748 
0753 0754 07~5 0756 
0761 0762 0763 0764 

5 6 7 0 

0005 0006 0007 0400 0256 
0013 0014 0015 0410 0264 
0021 0022 0023 0420 0272 
0029 0030 0031 0430 0280 
0037 0038 0039 0440 0288 
0045 0046 0047 0450 0296 
0053 0054 0055 0460 0304 
0061 0062 0063 0470 0312 

0069 0070 0071 0500 0320 
0077 0078 0079 0510 0328 
0085 0086 0087 05~0 0336 
0093 0094 0095 0530 0344 
0101 0102 0103 0540 0352 
0109 0110 0111 0550 0360 
0117 0118 0119 0560 0368 
0125 0126 0127 0570 0376 

0133 0134 0135 0600 ·0384 
0141 0142 0143 0610 0392 
0149 0150 0151 0620 0400 
0157 0158 0159 0630 0408 
0165 0166 0167 0640 0416 
0173 0174 0175 0650 0424 
0181 0182 0183 0660 0432 
0189 0190 0191 0670 I 0440 

I 
0197 0198 0199 0700' 0448 
0205 0206 0207 0710 i 0456 
0213 0214 0215 0720. 0464 
0221 0222 0223 0730 ! 0472 
0229 0230 0231 074010480 
0237 0238 0239 075: I 0488 
0245 0246 0247 0760 0496 
0253 0254 O~ 0770 0504 

5 6 7 
, ~ 0 

0517 0518 0519 1140010768 
0525 0526 0527 1410,0776 
0533 0534 0535 1420·0784 
0541 (l542 0543 1430 0792 
0549 0550 0551 I44J 08JO 
0557 0558 0559 14.50 0808 
1)565 0566 0567 1460 0816 
0573 0574 0575 1470 0824 

0581 0582 0583 1500,0832 
Oi89 0590 0591 1510 I 0840 
0597 0598 0599 1520 i 0848 
0605 0606 0607 1530; 0856 
0813 0614 0615 1540 I 0864 
0621 0622 oe23 1550' 0872 
0629 0630 0631 1560 0880 
0637 0638 0639 1570 0888 

0645 0646 0647 1600 0896 
0653 0654 0655 1610 0904 
0661 0662 0663 1620 0912 
0669 0670 0671 1630 0920 
0677 0678 0679 1640 0928 
0685 0686 0687 1650 ,0936 
0693 0694 0695 1660 10944 
0701 0702 0703 1670 0952 

0709 0710 0711 1700 0960 
0717 0718 0719 1710 0968 
0725 0726 0727 1720 0976 
0733 0734 0735 1730 098< 
0741 0142 0743 1740 0992 
0749 0750 0751 17~0 100e 
0757 07~8 0759 1760 1008 
0765 0766 0767 17"10 1016 

K-l 

I 2 3 4 5 6 7 

0257 0258 0259 0260 0261 0262 0263 
0265 0266 0267 0268 0269 0270 0271 
0273 0274 0275 0276 0277 0278 0279 
0281 0282 0283 0284 0285 0286 0287 
0289 0290 0291 0232 0293 0294 0295 
0297 0298 0299 0300 0301 0302 0303 
0305 0306 0307 0308 0309 0310 0311 
0313 0314 0315 0316 0317 0318 0319 

0321 0322 0323 0324 0325 0326 0327 
0329 0330 0331 0332 0333 0334 0335 
0337 0338 0339 0340 0341 0342 0343 
0345 0346 0341 0348 0349 0350 0351 
fi353 0354 0355 0356 0357 0358 0359 
0361 0362 0363 0364 0365 0366 0367 
0369 0370 0371 0372 0373 0314 0375 
0377 0378 0379 0380 0381 0382 0383 

0385 0386 0387 0388 0389 0390 0391 
0393 0394 0395 0396 0397 0398 0399 
0401 0402 0403 0404 0405 0406 0407 
0409 0410 0411 0412 0413 0414 0415 
0417 0418 0419 0420 0421 0422 0423 
0425 0426 0427 0428 0429 0430 0431 
0433 0434 0435 0436 0437 0438 0439 
0441 0442 0443 0444 0445 0446 0417 

0449 0450 0451 0452 0453 0454 0455 
0457 0458 0459 0460 0~61 0462 0463 
0465 0466 0467 0468 0469 0470 0471 
0473 0474 0475 0476 0477 0478 0479 
QoI81 0482 0483 0484 0485 0486 0487 
0489 0490 0491 0492 0493 0494 0495 
0497 0498 0499 0500 0501 ·0502 0503 
0505 0506 0507 0508 nS09 0510 0511 

I 2 3 4 5 6 7 

0769 0770 0771 0772 0773 0774 0775 
0777 0778 0779 0780 0781 0782 0783 
0785 0786 0787 0788 0789 0790 0791 
0793 0794 0795 0796 0797 0798 0799 
0801 0802 0803 0804 0805 080e 0807 
080ll 0810 0811 0812 0813 0814 0815 
0817 0818 0819 0820 0821 0822 0823 
0825 0826 0827 0828 0829 0830 0831 

0833 0834 0835 0836 0837 0838 0839 
0841 0842 0843 0844 0845 08i6 0847 
0849 0850 0851 0852 0853 0854 0855 
0857 0858 0859 0860 0861 08~2 086j 
0865 0866 0867 0868 0869 0870 0871 
0873 0874 0875 0876 0877 0878 08711 
0881 0882 0883 0884 0885 0886 0887 
0889 0890 0891 0892 0893 089~ 0895 

0897 0898 0899 0900 0901 0902 0903 
0905 0906 0907 0908 0909 0910 0911 
0913 0914 0915 0916 0917 0918 0919 
0921 0922 0923 0924 0925 0926 0927 
0929 0930 0931 0932 0933 0934 0935 
0937 0938 0939 0940 0941 0942 0943 
0945 0946 0947 0948 0949 0950 0951 
0953 0954 0955 0956 0957 0958 0959 

0961 0962 0963 0964 0965 0966 0967 
0969 0970 0971 0972 0973 0974 0975 
0977 0978 0979 0980 0981 0982 0983 
0985 0986 0987 0988 0989 0990 0991 
0993 0994 0995 0996 0997 -og98 09119 
1001 1002 1003 1004 100~ 100(1 1007 
1009 1010 1011 1012 1013 IOH 1015 
1017 1018 1019 1020 1021 1022 102l 



K.l OCTAL-DECIMAL INTEGER CONVERSIONS (Continued) 

2000 I 1024 to to 
2777· 1535 

(Octal) (Decimal) 

Octal Decimal 
10000 - 4096 
20000- 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

3000 11536 to to 
3777 2047 

(Octal) (Decimal ) 

I 
I 0 

2000' 1024 
2010,1032 
20201040 
2030 1048 
2040 1056 
2050 1064 
2060 1072 
2070 1080 

2100 1088 
2110 1096 
2120 1104 
2130 1112 
2140 1120 
2150 1128 
2160 1\36 
2170 1144 

2200 11152 
2210 1160 
2220 1168 
223~ 1176 
2240 1184 
2250 1192 
2260 1200 
2270 1208 

2300 1216 
2310 1224 
2320 1232 
2330 1240 
2340 1248 
2350 1256 
2360 1264 
2370 1272 

I 0 

3000 1536 
3010 1544 
3020 1552 
3030 1560 
3040 1568 
3050 1576 
3060 1584 
3070 1592 

3100 1600 
3110 1608 
3120 1616 
3130 1824 
3140 1632 
3150 1640 
3160 1648 
3170 1656 

3200 1664 
3210 1672 
3220 1680 
3230 1688 
3240 1696 
3250 1704 
326011712 
327011720 

3300 '1728 
331011736 
3320· 1744 
3330 1752 
3340 1760 
3350 1768 

,3360 1776 
3370 1784 

1 2 3 4 

1025 1026 1027 1028 
1033 1034 1035 1036 
1041 1042 1043 1044 
1049 1050 1051 1052 
1057 1058 1059 1060 
1065 1066 1067 1068 
1073 1074 ·1075 1076 
1081 1082 1083 1084 

11189 1090 1091 1092 
1097 1098 1099 1100 
1105 1106 1107 1108 
1113 1114 1115 1116 
1121 1122 1:23 1124 
1129 1130 1131 1132 
1137 1138 1139 1140 
1145 114G 1147 1148 

1153 1154 1155 1156 
1161 1162 1163 1164 
1169 1170 1171 1172 
1177 1178 1179 1180 
1185 1186 118" lI88 
1193 1194 1195 1196 
1201 1202 1203 1204 
1209 1210 1211 1212 

1217 1218 1219 1220 
1225 1226 1227 1228 
1233 1234 1235 1236 
1241 1242 1243 1244 
1249 1250 125! 1252 
1257 1258 1259 1260 
126.5 1266 1267' 1268 
127;1 1274 1275 1276 -

I 2 3 4 

1537 1538 1539 1540 
1545 1546 1547 1548 
1553 1554 1555 1556 
1561 1562 1563 1564 
1569 1570 1571 1572 
1577 1578 1579 1580 
1585. 1586 1587 1588 
1593 1594 1595 1596 

1601 1602 1603 1604 
1609 1610 1611 1612 
1617 1618 1619 1620 
1$25 1626 1627 1628 
1633 1634 1635 1636 
1641 1642 1643 1644 
1649 1650 1651 1652 
1657 16S8 1659 1660 

1665 1666 1667 1668 
1673 1674 1675 1676 
1681 1682 1683 1684 
1689 1690 1691 1692 
1697 1698 1699 1700 
1705 1706 1707 1708 
1713 1714 1715 1716 
1721 1722 1723 1724 

1729 1730 1731 1732 
1737 1738 1739 1740 
1745 1746 1747 1748 
1753 1754 1755· 1756 
1761 1762 1763 1764 
1769 1770 1771 1772 
1777 1778 1779 1780 
171!~ 1786 1787 n88 

5 6 7 0 I 2 3 

1029 1030 1031 2400 1280 1281 1282 1283 
1037 1038 1039 2410 1288 1289 1290 1291 
1045 1046 1047 2420 1296 1297 1298 1299 
10S3 1054 1055 2430 1304 1305 1306 1307 
1061 1062 1063 2440 1312 1313 1314 1315 
1069 1070 1071 2450 1320 1321 1322 1323 
1077 1078 1079 2460 1328 13211 1330 1331 
J085 1086 1087 2470 1336 1337 1338 1339 

1093 1094 1095 2500 1344 1345 1346 1347 
nOI 1102 1103 2510 1352 1353 1354 U55 
1109 1110 1111 2520 1360 1361 13:12 1363 
1117 1118 11111 2530 1368 1369 1370 1371 
1125 1126 1127 2540 1376 1377 1378 1379 
1133 1134 1135 2550 1384 1385 1386 1387 
1141 1142 1143 2560 1392 1393 1394 1395 
1149 WiO U51 2570 1400 1401 1402 1403 

1157 1158 1159 2600 1408 1409 1410 1411 
1165 1166 1167 2610 1416 1417 1418 1419 
1173 1174 1175 2.620 1424 1425 1426 1427 
1181 1182 1183 2630 1432 1433 1434 1435 
1189 1190 1191 2640 1440 1441 1442 1443 
11117 1198 1199 26Se. 1448 1449 1450 1451 
1205 1206 1207 2660 1456 1457 1458 1459 
1213 1214 1215 2670 1464 146S 1466 1467 

1221 1222 1223 2700 1472 1473 1414 Ins 
1229 1230 lUI 2710 1480 1481 1482 1483 
1237 1238 lUll 2720 1488 1489 1490 1491 
1245 1246 1247 2730 1496 1497 1498 1499 
1253 1254 1255 2740 1504 1505 1506 1507 
1261 1262 1263 2750 1512 1513 1514 ISIS 
1269 1270 1271 2760 1520 1521 H22 1523 
1277 1278 1279 2770 1528 1529 1530 1531 

5 6 7 0 1 2 3 

1541 1542 1543 3400 1792 1793 1794 179S 
1549 1550 15~1I 3410 1800 1801 1802 1803 
1557 1558 1559 3420 1808 1809 1810 IBII 
1565 1566 1567 3430 IBI6 1817 1818 1819 
1573 1574 1575 3440 1824 1825 1826 1827 
1581 1582 1583 3450 1832 1833 1834 1835 
1.589 1590 1591 3460 1840 1841 1842,1843 
1597 1598 1599 3470 1848 1849 1850 1851 

1605 1606 1607 3500 1856 1857 1858 1859 
1613 1614 1615 3510 1864 1865 1866 1867 
1621 1622 1623 3520 1872 1873 1874 1875 
1629 1630 1631 3530 1880 1881 1882 1883 
1637 i638 1639 3540 1888 1889 1890 1891 
1645 1646 1647 3550 1896 1897 1898 1899 
1653 16~4 1655 3560 1904 1905 1906 1907 
1661 1662 1663 3570 1912 1913 1914 1915 

1669 1670 1671 3600 1920 1921 1922 1923 
1677 1678 1,679 3610 1928 1929 19;10 1931 
1685 1686 1687 3620 1936 1937 1938 1939 
1693 1694 1695 3630 1944 1945 1946 1947 
1701 1702 1703 3640 1952 1953 1954 19:.5 
1709 1710 1711 3650 1960 1961 1962 1963 
1717 1718 1719 3660 1968 1969 1970 1971 
1725 1726 1727 3670 1976 1977 1978 1979 

1733 1734 1735 3700 1984 1985 1986 198'1 
1741 1742 1743 3710 1992 1993 1994 199~ 
1749 1750 1751 3720 2000 2001 2002 2003 
1757 17S8 1759 3730 2008 2009 2010 2011 
1765 1766 1767 3740 2016 2017 2018 2019 
1773 1774 1775 3"50 2024 2025 2026 2027 
1781 1182 1783 3760 2012 2033 2034 203:'1 
1789 1790 1791 3770 2040 204. 2!l42 2(14' 

K-2 

r-J 
--

4 5 6 1 

.128'4 1285 1286 1287 
1292 1293 1294 1295 
1300 1301 1302 1303 
1308 1309 1310 1311 
1316 1317 1318 13111 
1324 1325 ·1326 1327 
Ill2 1333 1334 1335 
1340 1341 1342 1343 

1348 1349 1350 1351 
1356 US? I3S8 1359 
1364 1365 1366 1367 
1372 1373 1374 1375 
1380 1381 1382 1383 
1388 1:.189 1390 1391 1 1396 1397 1398 13911 
1404 1405 1406 1407 

1412 1413 1414 HIS 
1420 1421 1422 14U 

( 
1428 1429 1430 1431 
1436 1437 1438 In9 
1444 1445 1446 1447 
1452 1453 1454 1455 
1460 1461 1462 1463 
1468 1469 1470 1471 

1476 1477 1478 147. 
1484 1485 1486 1417 
1492 1493 149~ 1495 
1500 1501 1502 1503 
1508 1509 1510 ISlI 
1516 1517' 1518 15111 ( 
1524 1525 1526 1527 
1532 1533 1534 1535 

4 5 6 7 

1796 17117 1798 1799 
1804 1805 1806 1807 
1812 1813 1814 1815 
1820 1821 1822 1823 
1828 1829 1830 1831 
1836 1837 1838 1839 
It844 1845 1846 1847 
1852 1853 1854 1855 ( 
1860 1861 1862 1"3 
1868 1869 1870 1871 
1876 1877 1878 1879 
1884 1885 1886 1887 
1892 1893 1894 1895 
1900 1901 1902 1903 
1908 1909 1910 1911 
1916 1917 1918 1919 

1924 1925 1926 1927 
1932 1933 1934 1935 
1940 1941 1942 1943 
1948 1949 1950 1951 
1956 1957 1958 1959 
1964 1965 1966 1967 
1972 1973 1974 1975 
1980 1981 1982 1983 

1988 1989 1990 1991 
1996 1997 1998 1999 
2004 2005 2006 2007 
2012 2013 2014 2015 
2020 2021 2022 2o.'!.i 
2e.~g 2029 2030 ;!Oll 

( 
~fJ36 20;17 20~5 2019 
20H 10<!!I t;~46 2047 



(-

/ 
\ 

( 

( 

K.l OCTAL-DECIMAL INTEGER CONVERSIONS (Continued) 

4000 2048 
to to 

4777 2559 
(Octal) (Decimal 

Octal Decimal 
10000- 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

5000 
to 

5777 
(Octal) 

2560 
to 

3071 
(Decimal 

r--"' 

0 

4000 2048 
4010 2056 
4020 2064 

) 4030 2072 
4040 2080 
40,0 2088 
4060 21196 
4070 2104 

4100 2112 
4110 2120 
4120 2128 
4130 2136 
4140 2144 
4150 2152 
4160 2160 
4170 2168 

4200 2176 
4210 2184 
4220 2192 
4230 2200 
4240 2208 
4250 2216 
4260 2224 
4270 2232 

4300 2240 
4310 2248 
4320 2256 
4330 2264 
4340 2272 
4350 2280 
4360 2288 
4370 2296 

I 0 

5000 2560 
5010 2568 
5020 2576 

) 5030 2584 
5040 2592 
5050 2600 
5060 2608 
5070 2616 

I 

510°1 2624 
5110 2632 
5120 2640 
5130 2648 
5\40 2656 
5150 2664 
5160 2672 
5170 2680 

5200 2688 
5210 2696 
5220 2704 
5230 2712 
5240 2720 
5250 2728 
5260 2736 
5270 2744 

5300 2752 
5310 2760 
5320 2768 
5330 2776 
5340 2784 
5150 2792 
53&0 2800 
5370 2808 

I 2 3 4 5 

20H 2050 205\ 2052 2053 
2057 2058 2059 2060 2061 
2065 2066 2067 2068 2069 
2073 2074 207~ 2076 2077 
2081 2082 2083 2084 2085 
2089 2090 2091 2092 2093 
2097 2098 2099 2100 2101 
2105 2106 2107 2108 2109 

2113 2114 2115 2116 2117 
2121 2122 2123 2124 2125 
2129 2130 2131 2132 2133 
2137 2138 2139 2140 2141 
2145 2146 2147 2148 2149 
2153 2154 2155 2156 2157 
2161 2162 2163 2164 2165 
2169 2170 2171 2172 2173 

2177 2178 2179 2180 2181 
2185 2186 2187 2188 2189 
2193 2194 2195 2196 2113': 
2201 2202 2203 2204 2205 
2209 2210 2211 2212 2213 
2217 2218 2219 2220 2221 
2225 2226 2227 2228 2229 
2233 2234 2235 2236 2237 

2241 2242 2243 2244 2245 
2'49 2250 2251 2252 2253 
2257 2258 2259 2260 2261 
2265 2266 2267 2268 2269 
2273 2274 2275 2276 2277 
2281 2282 2283 2284 2285. 
2289 2290 2291 2292 2293 
2297 2298 2299 2300 2301 

I 2 3 4 5 

2561 2562 2563 2564 2565 
2569 2570 2571 2572 2573 
2577 2578 2579 2580 2581 
2585 2586 2587 2588 2~11I 
2593 2594 2595 25iS 2597 
2601 2602 2603 2804 2605 
2609 2610 2611 2612 2613 
2617 2618 2619 2620 2621 

2625 2626 2627 2628 2629 
2633 2634 2635 2636 2637 
2641 2642 2643 2644 2645 
2649 2650 2651 2652 2653 
2657 2658 2659 2660 2661 
2665 2666 2667 2668 2669 
2673 2674 2675 2676 2677 
2681 2682 2683 2684 2685 

2689 2690 2691 2692 2693 
2697 2698 2699 2700 2701 
2705 2706 2707 2708 2709 
2713 2714 2715 2716 2717 
2721 2722 2723 2724 2725 
2729 2730 2731 2732 2733 
2737 2738 2739 2740 2741 
2745 2746 2747 2748 2749 

2753 2754 2755 2756 2757 
2761 2762 2763 2764 2765 
2769 2770 2771 2772 2773 
2777 2778 2779 2780 2781 
2785 2786 2787 2788 2789 
2793 2794 2795 2796 2797 
2801 2802 2803 2804 2805 
2809 2810 2811 2812 2813 

6 7 0 I 2 

2054 2055 4400 2304 2305 2306 
2062 2063 4410 2312 2313 2314 
2070 2071 4420 2320 2321 2322 
2078 2079 01430 12328 2329 2330 
2086 2087 4440 2336 2337 2338 
2094 2095 4450 i 2344 2345 2346 
2102 2103 H60 2352 23~3 2354 
2110 2111 4470

1

2360 2361 2362 

2118 2119 4500 2368 2369 2370 
2126 2127 4510 2376 2377 2378 
2134 2135 452012384 2385 2386 
2142 2143 4530; 2392 2393 2394 
2150 2151 454012400 2401 2402 
2158 2159 4550i 2408 2409 2410 
2166 2167 4560 2416 2417 2418 
2174 2175 457012424 2425 2426 

2182 2183 4600 12432 2433 2434 
2190 2191 4610i2440 2441 2442 
2198 2199 4620,2448 2449 2450 
2206 2207 4630i2456 2457 2458 
2214 2215 4640 • 2464 2465 2466 
2222 2223 4650 i 2472 2473 2474 
2230 2231 466012480 2481 2482 
2238 2239 4670

1
2488 2489 2490 

2246 2247 4700
1
2496 2497 2498 

2254 22~5 4710 2504 2505 2506 
2262 2263 4720: 2512 2513 2514 
2270 2271 473012520 2521 2522 
2278 2279 474012528 2529 2530 
2286 2287 4750 2536 2537 2538 
2294 2295 4760: 2~H 2545 2546 
2302 2303, i47701 2552 2553 2554 -

I 

6 7 I 0 I 2 

2~66 25611 5400! 2fll6 2817 2818 
2574 2575 541012824 2825 2826 
~582 2583\ 5420 2832 2833 2834 
2590 2591 5430 2840 2841 2842 
2598 2599 5440 2848 2849 2850 
2S06 2607 5450 2856 2857 2858 
2814 2615 5460 2864 2865 2866 
2622 2623 5470 2872 2873 2874 

2630 2631 5500 2880 2881 2882 
2638 2639 5510 2888 2889 2890 
2646 2647 5520 2896 2897 2898 
2654 2655 5530 2904 2905 2906 
2662 2663 5540 2912 2913 2914 
2670 2671 5550 2920 2921 2922 
2678 2679 5560 2928 2929 2930 
2686 2687 5570 2936 2937 2938 

2694 2695 5600 2944 2945 2946 
2702 2703 ·5610 2952 2953 2954 
2710 2711 5620 2960 2961 2962 
2718 2719 5630 2968 ~9G9 2970 
2726 2727 5640 2976 2977 2978 
2734 2735 5650 2'334 2985 2986 
2H2 2743 5660 2992 2993 2994 
2750 2751 5670 3000 3001 3002 

2758 2759 ~700 3008 3009 3010 
2766 2767 5710 3016 3017 3018 
2774 2775 5720 3024 3025 3026 
2782 2783 5730 3032 3033 3034 
2790 2791 5740 3040 3041 3042 
2798 2799 5750 3048 3049 3050 
2806 2807 5760 3056 3057 3058 
2814 2815 5770 3064 3ee5 3066 

K-3 

3 4 5 I 7 

2307 2308 2309 231(1 Ull 
2315 2316 2317 2311 Ul9 
2323 2324 2325 2326 ~327 
2331 2332 2333 2334 2335 
2339 2340 23~1 2342 UO 
2347 2348 2349 2350 2351 
2355 2355 2357 2358 2359 
2363 2364 2365 2366 2367 

2371 2372 2373 2374 2375 
2379 2380 2381 2382 2383 
2387 2388 2389 2390 2391 
2395 2396 2397 2398 2399 
2403 2404 2405 2406 2407 
2411 2412 2413 2414 2415 
2419 2420 2421 2422 2423 
2427 2428 2429 2430 2431 

'2435 2436 2437 2438 2439 
2443 2444 2445 2446 2447 
2451 2452 2453 2454 2455 
2459 2460 2461 2462 2413 
2467 2468 2469 2470 2471 
2475 2476 2477 2478 2479 
2483 2184 2485 2486 2487 
2491 2492 2493 2494 2495 

2499 2500 2501 2502 2503 
2507 2508 2509 2510 2511 
2515 2516 2517 2518 2519 
2523 2524 2525 2526 2527 
2531 2532 2533 2534 25~5 
2539 2540 2541 2542 2543 
2547 2548 2549 2550 2551 
2555 2556 2557 2558 2559 

3 4 ~ 6 7 

2819 2820 28~1 2822 2123 
2827 2828 2829 2830 2831 
2835 2836 2837 2838 2139 
2843 2844 2845 2846 .847 
2851 2852 2853 2854 2155 
2859 2860 2861 2862 2863 
2867 2868 2869 2870 2e7l 
2875 ~876 2877 2878 28711 

2883 2884 2885 2886 2887 
2891 2892 2893 2894 2895 
2899 2900 2901 2902 2903 
2907 2908 2909 2910 2911 
2915 2916 2917 2918 21119 
2923 2924 2925 2926 2927 
2931 2932 2933 2934 2935 
2939 2940 2941 2942 2943 

2947 2948 2949 2950 2951 
2955 2956 2957 2958 2959 
2963 2964 2965 2966 2967 
297: 2972 2973 2974 2975 
2979 2980 2981 2982 2i83 
2987 2988 2989 2990 2991 
2995 2996 2997 2998 2999 
3003 3004 3005 3006 3007 

3011 3012 3013 3014 3015 
3019 3020 3021 3022 3023 
3027 3028 3029 3030 3031 
3035 3036 3037 3038 3039 
3043 3044 :1045 3046 3047 
3051 3052 3053 3054 3055 
3059 3060 3061 3062 3063 
3067 306B 3069 3070 3071 



K.l OCTAL-DECIMAL INTEGER CONVERSIONS (Concluded) 

6000 3072 
to to 

6777 3583 
(Octal) (Decimal) 

Octal Decimal 
10000 - 4096 
20000 - 8192 
30000- 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

7000 
to 

7777 
(Octal) 

3584 
to 

4095 
(Decimal) 

I 0 I 2 3 4 5 6 7 

800013072 3073 3074 3075 3076 3077 3078 3079 
801013080 3081 3082 3083 3084 3085 3086 3087 
8020 3088 3089 3090 3091 3092 3093 3094 3095 
8030 3096 3097 3098 3099 3100 3101 3102 3103 
80401 3104 3105 3106 3107 3108 3109 3110 31 i I 
8050 i 3112 3113 3114 3115 3116 3117 3118 3119 
6060,3120 3121 3122 3123 3124 3125 3126 3127 
607013128 3129 3130 3131 3132 3133 3134 3135 

6100:3136 3137 3138 3139 3140 3141 3142 3143 
6110,3144 3145 3146 3147 3148 3149 3150 3151 
6120,3152 31j3 3154 3155 3156 3157 31j8 3159 
8130 i 3160 3161 3162 3163 3164 3165 3166 3167 
614013168 3169 3170 ~171 3172 3173 3174 3175 
6150'3176 3171 3178 3179 3180 3181 3182 3183 
6160 3184 3185 3186 3187 3188 3189 3190 3191 
6170 3192 3193 3'194 3195 3196 3197 3198 3199 

16200 3200 3201 3202 3203 3204 3205 3206 3207 
1210 3208 3209 3210 3211 3212 3213 3214 3215 
6220 3216 3117 3218 3219 3220 3221 3222 3223 
6230 3224 3225 3226 3227 3228 3229 3230 3231 
6240 3232 3233 3234 3235 3236 3237 3238 3239 
6250 3240 3241 3242 3243 3244 3245 3246 3247 
8280 3248 3249 3250 3251 3252 3253 3254 3255 
8270 3256 3257 3258 3259 3260 3261 3262 3263 

8300 ,3264 3265 3266 3267 3268 3269 3270 3271 
8310: 3272 3273 3274 3275 3276 3277 3278 3279 
8320 13280 3281 3282 3283 3284 3285 3286 3287 
6330 3288 3289 3290 3291 3292 3293 3294 3295 
6340 : 3296 3297 3298 3299 3300 3301 3302 3303 
8350 .3304 3305 3306 3307 3308 3309 3310 3311 
6360: 3312 3313 3314 3315 3316 3317 3318 3319 
6370 13320 3321 3322 3323 3324 3325 3326 3327 

0 I 2 3 4 5 6 7 

7000 I 3584 3585 3586 3587 3588 3589 3590 3591 
7010 3592 3593 3594 3595 3596 3597 3598 3599 
7020 3600 3601 3602 3603 3604 3605 3606 3607 
7030 3608 3609 3810 3611 3612 3613 3614 3615 
7040 3816 ~617 3618 3619 3620 3621 3622 3623 
7050 3624 3625 3626 3627 3628 3629 3630 3631 
7060 3632 3633 3634 3635 3636 3637 3638 3639 
7070 3640 3641 3642 3643 3644 3645 3646 3647 

7100 3648 3649 3650 3651 3652 3653 3654 3655 
7110 3656 3657 3658 3659 3660 3661 3662 3663 
7120 3664 3665 3666 3687, 3668 3669 3670 3671 
7130 3672 3673 3874 3675 3676 3677 3678 3679 
7140 3680 3881 3682 3683 3684 3685 3686 3687 
7150 3688 3889 3690 3691 3892 3693 3694 3695 
7180 3696 3891 3898 3699 3700 3701 3702 3703 
7170 3704 3705 3706 3707 3708 3709 3710 3711 

7200 3712 3713 3714 3715 3716 3717 3'18 3719 
7210 3720 3721 3722 3723 3724 3725 3726 3727 
7220 3721 31129 3730 3731 3732 3733 3734 3735 
7230 373' 3737 3738 3139 3740 3741 3742 3743 
7240 3744 370 3748 374T 3748 3749 3750 3751 
1250 3752 3753 3754 3755 3758 3757 3758 3759 
7210 3780 37111 3782 3783 3784 3765 3766 3787 
7270 3188 3769 3770 3771 3772 3'1n 3774 3775 

7300 3778 3777 3778 3779 3780 3781 3782 3783 
7310 3784 378S 3718 3787 3788 3789 3790 3791 
7320 3792 3793 3794 3795 3796 .3797 3798 3799 
7330 3800 3801 3802 3803 3804 3805 3806 380? 
7:H0 3101 3809 3810 3811 3812 3813 3814 3815 
735:1 3111 3817 3818 3819 3820 3821 3822 3823 
7310 3824 3825 3828 3127 3828 3829 3830 3831 
Tno 3832 3833 3834 3135 3838 3137 3838 3839 

K-4 

0 I 2 

6400 3328 3329 3330 
6410 3336 3337 3338 
6420 3344 334.5 3346 
6430 3352 335'3 3354 
6440 3360 3361 3362 
6450 [3368 3369 3370 
6460 3376 3377 3378 
647013384 3:i85 3386 

65001 3392 3393 3394 
6510: 3400 3401 3402 

16520 i 3408 3409 3410 
6530: 3416 3417 3418 

,6540 I 3424 3425 3426 
6550; 3432 3433 3434 
6560 3440 3441 3442 
6570: 3448 3449 3450 

6600 I 3456 3457 3458 
16610i 3464 3465 3466 
6620: 3472 3473 3474 

'6630: 3480 3481 3482 
6640' 3488 3489 3490 
6650 I 3496 3497 3498 
6660! 3:;04 3505 3506 
6670; 3512 3513 3514 

6700 i 3520 3521 3522 
6710 3528 3529 3530 
6720 I 3536 3537 3538 

1673013544 3545 3546 
,6740 3552 3553 3554 
16750 I 3560 3561 3562 
16760: 3568 3569 3570 
~2Ql 3576 3577 3578 

i 0 I 2 

740013840 3841 3842 
7410

1
3848 3849 3850 

7420 I 3856 3857 3858 
7430

1 
3864 3865 3866 

74403872 3873 3874 
7450 3880 3881 3882 
7460 3888 3889 3890 
7470 3896 3897 3898 

7500 3904 3905 3906 
7510 3912 3913 3914 
7520 3920 3921 3922 
7530 3928 3929 3930 
7540 3936 3937 3938 
7550 3944 3945 3946 
7560 3952 3953 3954 
7570 3960 3961 3962 

7600 3968 3969 3970 
7610 3976 3977 3978 
7620 3984 3985 3986 
7630 3992 3993 3994 
7640 4000 4001 4002 
7650 4008 4009 4010 
7660 4016 4017 4018 
7670 4024 4025 4026 

7700 4032 4033 4034 
'1710 4040 4041 4042 
7720 4048 4049 4050 
7730 4058 4057 4058 
7740 4064 4065 4066 
7750 4072 4073 4074 
7760 4080 4081 4082 
7770 4088 4089 4090 

--
3 4 5 6 7 

3331 3332 3333 3334 3335 
3339 3340 3341 3342 3343 
3347 3348 3349 3350 3351 
3355 3356 3357 3358 3359 
3363 3364 3365 3366 3367 
3371 3372 3373 3374 3375 
3379 3380 338.1 3382 3383 
3387 3388 3389 3390 3391 

3395 3396 3397 3398 3399 
3403 3404 3405 3406 3407 
3411 3412 3413 3414 3415 
3419 3420 3421 3422 3423 
3427 3428 3429 3430 3431 
3435 34~6 3437 3438 3439 
3443 3444 3445 3446 3447 
3451 ,3452 3453 3454 ~455 

3459 3460 3461 3462 3463 
3467 3468 3469 3470 3471 

( 
3475 3476 3477 3478 3479 
3483 3484 3485 3486 3487 
3491 3492 3493 3494 3495 
3499 35-00 3501 3502 3503 
3507 3508 3509 3510 3511 
3515 3516 3517 3518 3519 

3523 3524 3525 3526 3527 
3531 3532 3533 3534 3535 
3539 3540 3541 3542 3543 
3547 3548 3549 3550 3551 
3555 3556 3557 3558 3559 
3563 3564 3565 3566 3567 ( 
3571 3572 3573 3574 3575 
3579 3580 3581 3582 3583. 

3 4 5 6 'I 

3843 3844 3845 3846 3847 
3851 3852 3853 3854 3855 
3859 3860 3861 3862 3863 
3867 3868 3869 3870 3871 
3875 3876 3877 3878 3879 
3883 3884 3885 3886 3887 
3891 3892 3893 3894 3895 
3899 3900 3901 3902 3903 ( 
3907 3908 3909 3910 3911 
3915 3916 3917 3918 3919 
3923 3924 3925 3926 3927 
3931 3932 3933 3934 3935 
3939 3940 3941 3942 394:1 
3947 3948 3949 3950 3951 
3955 3956 3957 3958 3959 
3963 3964 3965 3966 3967 

3971 3972 3973 3974 3975 
3979 3980 3981 3982 3983 
3987 3988 3989 3990 3991 
3995 3996 3997 3998 3999 
4003 4004 4005 4006 4007 
40il 4012 4013 4014 4015 
4019 4020 4021 1022 4023 
4027 4028 4029 4030 4031 

4035 4036 4037 4038 4039 
4043 4044 4045 4046 4047 
'051 4052 4053 4054 4055 
4059 4080 4061 4062 4083 
4067 4068 4069 4070 4071 ( 
4075 4076 4077 4078 4079 
4083 4084 4085 4088 4087 
4091 4092 4093 4094 4095 



Ko2 POWERS OF TWO 

2" -2 
" 

( 0 1.0 
1 0.5 

4 2 0.25 
8 3 0.125 

16 4 0.062 5 

;.;\ 32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 
256 e 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 
4 096 12 0.000 244 140 625 

( 8 192 13 0.000 122 070 312 5 
16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 
65 536 16 0.000 015 258 789 062 5 

131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 

0 8 388 608 23 0.000 000 119 209 289 550 781 25 
?: 16 777 216 24 0.000 000 059 604 644 775 390 625 
I-

33 554 432 25 0.000 000 029 802 322 387 695 312 5 0 67 108 864 26 0.000 000 014 901 161 193 847 656 25 
( '" 134 217 728 27 0.000 000 007 450 580 596 923 808 125 '" LU 268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 "'=--:---- ?: 

0 536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 
"- I 073 741 824 30 000 931 322 574 615 478 515 625 0.000 000 

2 147 483 848 31 0.000 000 000 465 661 287 307 739 257 812 5 
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 081 25 
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

( 
.' 1 ,099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 

2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
\ 4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 

8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 
17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 115 202 003 717 422 485 351 562 5 

140 737 -488 355 328 47 0.000 000 000 000" 007 105 427 357 601 001 858 711 242 675 781 25 
281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 634 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 

" 2 251 799 813 985 248 51 o .000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 
" 4 503 599 627 370 496 52 o .000 000 000 000 000 222 044 604 925 031 308 084 726 333 668 164 062 5 

9 007 199 254 740 992 53 o .000 000 000 000 000 111 022 302 462 515 654 042 363 166 834 582 031 25 
18 014 398 509 481 984 54 o .000 000 000 000 000 055 511 151 231 257 827 021 171 513 417 041 015 625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 708 520 507 812 5 
72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 215 395 854 260 253 .. 906 25 

.,.\ 144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 927 1 30 126 953 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 963 565 063 476 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 782 531 738 281 25 
152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 891 265 869 140 625 

( 

K-5 



K.3 SCALES OF NOTATION 

K.3.1 2x In Decimal 

x 2' x 2' x 2' 
0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293 
0.002 1.00138 72557 11335 0.02 1.01395 .94797 90029 0.2 1.14869 83549 97035 
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916 
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894 
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095 
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398 
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471 
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248 
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615 

K.3.2 10±n In Octal 

10· n 10-· 10· n 10-· 
1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66 

• 12 1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77 
144 2 0.005 075 341 217 270 243 66 16 432 451 21~ 000 12 0.000 000 000 000 043 136 32 

1 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35 
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000000000 000 000264 11 

303 240 5 0.000 002 476 112 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01 
3 641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63 

46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14 

K.3.3 n log 2 and 10 In Decimal 
c 575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01 

7 346 545 000 9 0.000 000 000 104 560 276 41 

n n 108102 n 1082 10 n n 10810 2 n IOg2 10 
1 0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693 
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642 
3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591 
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.8977$5 '-8540 
5 1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489 

K.3.4 Addition and MultiElication l Binary and Octal 

Addition Multiplication ( 
Binary Scale 

0tO = 0 Oxo=o 
0+1=1 0= 1 OXl=lxO=O 

1 1 = 10 1 x 1 = 1 

Octal Scale 

0 01 02 03 04 05 06 07 1 02 03 04 05 06 07 

1 02 03 04 05 06 07 10 2 04 06 10 12 14 16 

2 03 04 05 06 07 10 11 3 06 11 14 17 22 25 

( 3 04 05 06 07 10 11 12 4 10 14 20 24 30 34 

4 05 06 07 10 11 12 13 5 12 17 24 .31 36 43 

5 06 07 10 11 12 13 14 6 14 22 30 36 44 52 

6 07 10 11 12 13 14 15 7 16 25 34 43 52 61 

7 10 11 12 13 14 15 16 

K.3.5 Mathematical Constants In Octal 

1T= 3.11037 552421, e= 2.55760 521305, ,,= 0.44742 147707, 

1T;"1 = 0.24276 301556, e- r = 0.27426 530661, In" = 0.43127 233602, 

V" = 1.61337 611067, va==- 1.51411 230704, logz" = 0.62573 030645, 

In 1T = 1.11206. 404435, loglo e = 0.33626 754251, v2= 1.32404 746320, 

logz 1T = 1.51544 163223. logz e = 1.34252 166245, In 2 = 0.54271 027760. ( 
vTO = 3.12305 407267, logz 10 = 3.24464 741136. In 10 = 2.23273 067355, 

K-6 



( Ko2 POWERS OF TWO 

2n -2 
n 

( a 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 ;.J, 
64 6 0.015 625 

128 7 0.007 812 5 
256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 
4 096 12 0.000 244 140 625 

( 8 192 13 0.000 122 070 312 5 
16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 
65 536 16 0.000 015 258 789 062 5 

131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 

0 8 388 608 23 0.000 000 119 209 289 550 781 25 
3: 16 777 216 24 0.000 000 059 604 644 775 390 625 ... 

33 554 432 25 0.000 000 802 322 387 695 312 5 u.. 029 

( 
0 67 108 864 26 0.000 000 014 901 161 193 847 656 25 
V> 134 217728 27 0.000 000 007 450 580 596 923 808 125 '" w 268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 "- 3: 
0 536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 
D.. 

1 073 741 824 30 322 615 478 515 625 0.000 000 000 931 574 
2 147 483 848 31 0.000 000 000 465 661 287 307 739 257 812 5 
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 081 25 
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813888 39 0.000 000 000 00 1 818 989 403 545 856 475 830 078 125 

.' 00 1 ,099 511 627 776 40 a . 000 000 000 000 909 494 701 772 928 237 915 039 062 5 ( 2 199 023 255 552 41 a . 000 000 000 000 454 747 350 886 464 118 957 519 531 25 
\. 4 398 046 511 104 42 a . 000 000 000 000 227 373 675 443 232 059 478 759 765 625 

8 796 093 022 208 43 a . 000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 
17 592 186 044 416 44 a . 000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 a . 000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000' 007 105 427 357 601 001 858 711 242 675 781 25 
281 474 976 710 656 48 a . 000 000 000 000 00 3 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 a . 000 000 000 000 00 1 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 634 50 a . 000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 

" 
2 251 799 813 985 248 51 a . 000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 
4 503 599 627 370 496 52 o .000 000 000 000 000 222 044 604 925 031 308 084 726 333 668 164 062 5 
9 007 199 254 740 992 53 a . 000 000 000 000 000 111 022 302 462 515 654 042 363 166 834 582 031 25 

18 014 398 509 481 9134 54 a . 000 000 000 000 000 055 511 151 231 257 827 021 171 513 417 041 015 625 
36 028 797 018 963 968 55 a . 000 000 000 000 000 027 755 575 615 628 913 510 590 791 708 520 507 812 5 
72 057 594 037 927 936 56 a . 000 000 000 000 000 013 877 787 807 814 456 755 215 395 854 260 253. 906 25 

'\ 144 115 188 075 855 872 57 a . 000 000 000 000 000 006 938 893 903 907 228 377 647 697 927 130 126 953 125 
288 230 376 151 711 744 58 a . 000 000 000 000 000 003 469 446 951 953 614 188 823 848 963 565 063 476 562 5 
576 460 752 303 423 488 59 a . 000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 782 531 738 281 25 
152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 891 265 869 140 625 

K-5 



K.3 SCALES OF NOTATION 

K.3.1 2x In Decimal 

x 2' x 2' x 2' 
0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293 
0.002 1.00138 72557 11335 0.02 1.01395 .94797 90029 0.2 1.14869 83549 97035 
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916 
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894 
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095 
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398 
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471 
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248 
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615 

K.3.2 10m In Octal 

10" n 10-· 10· n 10-· 
1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66 .. 12 1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77 

144 2 0.005 075 341 217 270 243 66 16 432 451 21~ 000 12 0.000 000 000 000 043 136 32 
1 750 3 0.000 406 111 564 570 651 77 221 411634 520 000 13 0.000 000 000 000 003 411 35 

23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11 

303 240 5 0.000 002 476 112 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01 
3 641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63 

46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14 
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01 

7 346 545 000 9 0.000 000 000 104 560 276 41 

n log 2 and 10 In Decimal 

n 
1 
2 
3 
4 
5 

n 10810 2 
0.30102 99957 
0.60205 99913 
0.90308 99870 
1.20411 99827 
1.50514 99783 

n 1082 10 
3.32192 80949 
6.64385 61898 
9.96578 42847 

13.28771 23795 
16.60964 04744 

n 
6 
7 
8 
9 

10 

n loglo 2 n 108210 
1.80617 99740 19.93156 85693 
2.10720 99696 23.25349 66642 
2.40823 99653 26.57542 47591 
2.70926 99610 29.897::15 '-8540 
3.01029 99566 33.21928 09489 

K.3.4 Addition and Multiplication, Binary and Octal 

Addition 

0tO = 0 0+1=1 0= 1 
1 1 = 10 

0 01 02 03 04 05 06 

1 02 03 04 05 06 07 

2 03 04 05 06 07 10 

3 04 05 06 07 10 11 

4 05 06 07 10 11 12 

5 06 01 10 11 12 13 

6 07 10 11 12 13 14 

7 10 11 12 13 14 15 

K.3.5 Mathematical Constants 

1r= 3.11037 552421, e= 

1r:" 1 = 0.24276 301556, e- r = 

v-; = 1.61337 611067. ve= 

In 1r = 1.11206. 404435, loglo e = 

log21r = 1.51544 163223. log2 e = 

vl0 = 3.12305 407267. log2 10 = 

Multiplication 

Binary Scale 

Octal Scale 

07 1 

10 2 

11 3 

12 4 

13 5 

14 6 

15 7 

16 

oxo=o 
OXl=lxO=O 

1 x 1 = 1 

02 03 04 05 06 

04 06 10 12 14 

06 11 14 17 22 

10 14 20 24 30 

12 17 24 31 36 

14 22 30 36 44 

16 25 34 43 52 

In Octal 

2.55760 521305, 1'= 

0.27426 530661a In'Y = 

1.51411 230704, log2'Y = 

0.33626 754251. V2= 

1.34252 166245. In 2 = 

3.24464 741136. In 10 = 

K-6 

07 

16 

25 

34 

43 

52 

61 

0.44742 147707, 

0.43127 233602, 

0.62573 030645. 

1.32404 746320. 

0.54271 027760. 

2.23273 067355. 

r- i 

( 

( 

( 

( 



( 

( 

( 

APPENDIX L 

NOTE TO USERS OF SERIAL LA3~ 

AND 6~~, l2~~, AND 24~~ BAUD VT~5IS 

The serial LA3~ requires that filler characters follow each carriage 

return; the 6~~, l2~~, and 24~~ baud VT~5IS require that filler char­

acters follow each line feed. The following table lists the filler 

characters needed. The byte at location 448 has been established as 

the filler count and the byte at location 45 8 contains the character 

to be filled. These locations are initially set to zero by PAL-llA 

and ED-ll to allow normal operation of the program. 

Depending on the terminal, change the locations as follows: 

LOC 44 LOC 45 Resultin2 Word (binarl) 

LA3~ Jill 8 ~158 ~~~~ll~l~~~~l~~l 

VT~5 6~~ Baud ~~18 ~128 ~~~~l~l~~~~~~~~l 

VT~5 l2~~ Baud ~~28 ~128 ~~~~l~l~~~~~~~l~ 

VT~5 24~~ Baud ~~48 ~128 ~~~~l~l~~~~~~l~~ 

The proper binary word can be stored at location 448 by using the 

console switches as described in section 2.1.2 of this manual. 

Furthermore, users with a 24~~ baud VT~5 should avoid the use of 

vertical tab characters in their programs. vertical tabs will not be 

properly filled and may cause characters to be lost. 

Once the changes have been made, the program may be dumped to paper 

tape by using the bootstrap version of DUMPAB (see section 6.3 in 

this manual). 

The above changes only affect output to the console teleprinter. 

Users of lOX or IOXLPT source tapes will find the byte at location 44 

tagged "1.44:" and the byte at location 45 tagged "1.45:". These 

locations are defined near the end of the second source tape and can 

be changed to appropriate values using ED-ll. 

ODT-ll uses the locations (44 and 45) but does not set them to zero 

initially. 

L-l 





( 

( 

( 

( 

Abbreviations, standard PDP-II, J-l 
Absolute address, 1-12, 3-16, 9-3 
Absolute Loader, 6-1 

checksum error, 6-12 
loading into core, 6-8 
operation, 6-10 
start address, 3-23, 6-8 
summary, E-3 

Absolute mode of address, 9-3 
Absolute tapes, loading, 6-8, 6-9, 

6-10 
Accessing 

registers, ODT-ll, 5-7 
unstructured data, 1-11 

Access tables, random, 1-10 
Accumulator, 1-7 
Adding devices to lOX, 7-24 
ADD instructions, 1-8 
Addition operator, 3-9 
Address 

interrupt vectors, 1-15 
pointers, 1-8 
register display, 2-2 

Address, 
absolute, 1-12 
current byte, 3-10 
current word, 3-10 
relative, 1-12 

ADDRESS light on switch register, 
2-4 

Address modes, see Modes 
Addressing, 1-6 

in assembly language, 3-11 
unstructured data, 1-7 

Addressing modes, operand, 1-7 
Advance command, 4-7 
Altering reg1ster contents, 9-7 
ALT MODE/ESC (Teletype key), 2-7 
AND operator, 3-9, 5-12 
I (apostrophe) usage, PAL-IIA, 3-10 
Arguments, ED-II, 4-2 
Arithmetic operators, PAL-IIA, 3-9 
.ASCII assembly directive, 3-22 
ASCII 

address mode, 7-8, 7-11 
character set, 3-2, A-I 
conversion, 3-10 

ASCII, formatted, 7-8 to 7-10 
Assembler, PAL-IIA see Program 

Assembly Language 
Assembler directive 

.ASCII, 3-22 
• BYTE, 3-21, 3-31 
• EOT, 3-29 
• END, 3-20 
• EVEN, 3-20 
• WORD, 3-20 

Assembler directives (pseudo-ops) 
misspelled, 3-21 
summary of, B-8 

INDEX 

Assembling 
ODT-ll, 5-28 
PAL-IIA assembler, I-I 

Assembly dialogue, 3-29 
Assembly language syntax, B-2 
Assembly listing specification, 3-24, 

3 .... 31 
Assembly location counter, PAL-IIA, 

3-10 
Assignments, undefined direct, 3-26 
* (asterisk) symbol usage, 4-1 
@ (at) symbol usage, 3-17 
Autodecrement address mode, 1-8, 1-9, 

3-14 
Autoincrement address mode, 1-8, 1-9, 

3-13, 3-14 

+ (back-arrow), ODT-ll, 5-7 
"(backslash), ODT-IIX, 5-14 
Backspace paper tape punch, 2-8 
Bad Entry (ODT-ll), 5-19 
Beginning command, ED-II, 4-7 
Binary mode of address, 7-11, 7-12 
Blank operator fie]4,(PAL-IIA), 3-21 
Bootstrap 'Loader, 6"':1 through 6--7 

loading into core, 6-3 
summary, E-l 

Bootstrap tapes, loading, 6-5 
Brackets, 

angle, 5-15 
square, 2-7 

Branching (ODT-ll), 5-13 
Branch instructions, PAL-IIA, 3-19, 

B-7 
Breakpoints, 5-8, 5-14, 5-20 

ODT-llX, 5-16 
repeat count, 5-11 
set in loop, 5-10 

B.SP (punch control), 2-8 
Buffer arrangement, data transfer 

commands, lOX, 7-4 
Buffer 

overflow, 7-9 
size, 7-5 

Buffering, double, 7-17 
Bus address register, 2-2 
BUS light, 2-3 
.BYTE assembler directive, 3-21. 3-31 
Byte 

addressing, 1-6 
count (lOX), 7-8, 7-12, 7-13 
instructions, 1-9, 1-13 

Calculating offsets, 
ODT-ll, 5-13 
ODT-IIX, 5-16 

Call, subroutine, 1-4, B-8 
Carriage return character, 3-2, 7-9 

X-I 



Central Processor 
priority levels, 1-5 
status register (PS), 1-4 

Change command, ED-ll, 4-11 
Changing location 

ODT-ll, 5-4 
ODT-llX, 5-14 

Character deletion 
ED-ll, 4-10, 4-11, 4-12 
lOX, 7-9 
PAL-llA, 3-24 

Character location pointer (dot), 
ED-ll, 4-3 

Character set 
ASCII, A-l 
PAL-llA, 3-2, B-1 

Characters loaded into printer memory, 
2-10 

Checksum, Absolute Loader, 6-12 
Checksum error, lOX, 7-7 
Checksummed binary data, lOX, 7-11 
Close out an edit, 4-9 
Closing location 

ODT-ll, 5-4 
ODT-llX, 5-14 

Code, position independent (PIC), 9-2 
Coding techniques, 9-7 
Command 

grouping, ED-ll, C-3 
mode, ED-ll, 4-1 
repeat count, 5-17 
syntax ODT, 5-2 

Commands 
buffer arrangement in data transfer, 

7-4 
delimiter, ED-ll, 4-2 
dot, ED-ll, 4-7 
ED-ll, 4-1 through 4-9, C~l 
Input/Output, ED-ll, 4-4 
mark, ED-ll, 4-7 
modify text, 4-1, C-2 
ODT-ll, 5-4 through 5-26, D-l 
open, ED-ll, 4-4 
search, ED-ll, 4-1 
single instruction mode,ODT-llX, 

5-18 
see also the specific subject 

Comment field, 3-4 
Condition codes in subroutines, 9-8 
Configuration of system, 2-1 
Conflict Byte/Word, 7-22, 7-23 
Conflicting devices 

IOX, 7-l3 
PAL-llA, 3-26 

Console, PDP-ll, 2-1 
CONT switch, 2-3 
Control switch operation, 2-4 
Conversion, ASCII, PAL-llA, 3-10 
Conversion tables, K-l 
Core memory, loading and dumping, 6-1 
Core memory requirements, 1-16 
Counter, program, see Program counter 

CTRL key, Teletype, 2-7 
CTRL/P 

assembler restart, PAL-ll, 3-27 
ED-ll, 4-12 
lOX, 7-9 

CTRL/U 
ED-ll, 4-12 
lOX, 7-9 

Current byte/word address, 3-10 
Current status (PS), 1-15 

Data, addressing unstructured,1-7,1-11 
see also Modes of data address 

Data 
register display, 2-2 
transfers, lOX, 7-12 

Data transfer commands, buffer 
arrangement in, lOX, 7-4 

DAT (Device Assignment Table), 7-2, 
7-3 

Debugging, see On-Line Debugging 
Techniques 

Defaul t, • WORD, 3-21 
Deferred address modes, 1-6 

index, 1-10 
PAL-ll, 3-13 through 3-18 
relative, 1-12 
summary, 1-11 

Delete command, 
ED-ll,4-l0 
lOX, 7-9 

Deletion of characters or lines, 
ED-ll, 4-10, 4-11, 4-12 
lOX, 7-9 
PAL":'llA, 3-24 

Delimiting character, 3-22, 4-2 
DEP switch, 2-3 
DESTINATION light, 2-4 
Device Assignment Table (DAT), 7-2, 

7-3 
Device 

codes, lOX, 7-25 
dependent functions, lOX, 7-9, 7-11 

7-12 
independence, 7-3 
interrupts, 1-5,1-6, 1-14 
specification, PAL-llA, 3-24 

Device Interrupt Table (DIT), 7-23 
Device Status Table (DST), 7-24 
Devices, conflicting 

lOX, 7-13 
PAL-llA, 3-26 

Devices, 
adding to lOX, 7-24 
multiple, 1-5 

Dialogue, PAL-llA 
assembly, 3-29 
initial, 3-23 

Direct access to stack, 1-10 
Direct assignment statement, PAL-llA, 

3-6, 3-7 

X-2 

(, 

) 

I', 

( 

( 

( 



c 

( 

( 

( 

Directives, assembler, see Assembler 
directives 

Direct memory devices, 1-5 
Done Bit, IOX, 7-7, 7-15, 7-16 
Dot (character location pointer) 

ED-II, 4-3, 4-5, 4-7, 4-8 
Double buffering, IOX, 7-17 
Double operand instruction, PAL-IIA, 

3-13, B-4 
+ (down arrow) symbol, ED-II, 4-2 
DUMPAB program, 6-12, 6-13, 6-14 
Dump program, 6-13 
Dumping core memory, 6-1 
DUMPTT program, 6-12, 6-13, 6-14 
Duplication of tape, H-l 

Echo suppression, 7-6 
ED-II, see Text Editor Program 
EMT instructions, PAL-IIA, 3-19 
ENABLE/HALT switch, 2-3 
.END (End of program) assembler direc-

tive, 3-20, 3-30 
End command, ED-II, 4-7 
End~of-File bit (EOF) , IOX, 7-8 
End of Medium bit (EOM) 

IOX, 7-7 
PAL-HA, 3-30 

End-of-Tape (EOT) , PAL-IIA, 3-19 
.EOT (End-of-Tape) assembler direc­

tive, 3-29 
= (equal sign) usage, PAL-IIA, 3-7 
Error codes 

nonfatal IOX, 7-6 
PAL-IIA, 3-32, 3-33, B-8 

Error halts, software 
ED-H, 4-22 
PAL-HA, 3-33 

Errors, 
detection of, ODT, 5-18 
ED-H, 4-12 
fatal, IOX, 7-19 
listing, 3-24 
PAL-II, 3-32 
phase, 3-8 
typing, 3-24 

ESCape key (Teletype), 2-7 
Evaluation of expressions, PAL-IIA, 

3-8 
.EVEN assembler directive, 3-20 
EXAM switch, 2-2 
Examine a specific location, 2-4 
Exchange commands, ED-II, 4-11 
Exclusive OR (XOR) , 5-12 
EXECUTE light, 2-3 
Expressions, PAL-IIA, 3-8 

FETCH light, 2-3 
Fields, PAL-llA 

comment, 3-4 
instruction operand, 3-18 

X-3 

Fields, PAL-IIA (cont.) 
label, 3-3 
operand, 3-4 
operator, 3-3 

Floating-Point Math Package (FPMP-ll), 
8-1, G-l 

Format control, PAL-llA, 3-4 
Formatted ASCII, address mode, IOX, 

7-8 to 7-10 
Formatted binary address mode, IOX, 

7-11, 7-12 
Form feed character, 3-4, 4-7 
Form feed command, ED-II, 4-7 
Forms of addressing, 1~13 
Forward references, 3-7, 3-8, 3-11 
FREE (Reader control), 2-7 
Functional organization, ODT, 5-20 
Functions, ODT, 5-4 through 5-26 

General registers, accessing, ODT-Il, 
5-7 

Get command, ED-II, 4-8 
Go command, ODT-ll, 5-10 
Grouping of Text Editor commands, C-3 

Halts, software error 
ED-H, 4-22 
PAL-HA, 3-33 

High speed reader/punch, 2-9 

I.CONFLC table, 7-26 
I.CONSIT table, 7-26 
I.DST table, 7-26 
I.FUNC table, 7-25 
I.INPUT routine, 7-27 
I.INTAB table, 7-26 
I.OUTPUT routine, 7-27 
I.SCRAAB table, 7-25 
Immediate address mode, 1-12, 3-15 
Incrementation of program counter, 3-12 
Index address mode, 1-10, 3-15, 9-4 

deferred, 1-10, 3~15 
Index register, 1-7 
Indicator lights, 2-3 
Indicators and switches on console, 2-1 
Infinite loop, ODT-ll, 5-10 
Initial dialogue 

ED-H, C-4 
PAL-IIA, 3-23, 3-29 

Initialize DAT slots (INIT), 7-4 
Initializing the system, 2-12 
Input/Output commands, ED-II, 4-4, C-l 
Input/Output Executive program (lOX), 

7-1 
buffers, 7-4 to 7-8 
data transfers, 7-12 to 7-18 
DAT (Device Assignment Table), 7-3, 

7-4 
errors, 7-19 
example program, 7-20 
internal information, 7-20 to 7-27 
modes, 7-8 to 7-12 
reenabling Reader, 7-18 
restarting, 7-19 
summary, F-l 



Insert command, ED-ll, 4-9 
Instruction capability, 1-13 
Instruction mnemonics, 3-3, 3-6, 

3-18, 3-21 
Instruction offset, 5-13 
Instruction operand fields, 3-18 
Instruction set, 1-6 
Instructions, 

ADD, 1-8 
assembly language, B-3 
byte, 1-9 
branch, 3-19 
double-operand, 3-13, B-4 
EMT, 3-19 
JMP, 3-l3 
JSR, 3-13 
single, 2-5 
single operand, B-4 
TRAP, 3-19, 5-22, 5-23 

Internal register, accessing, ODT, 
5-7 

Interrupt routines, lOX, 7-27 
Interrupt vectors, 1-6 

address, 1-15 
setting up, 9-5 

Interrupts, device, 1-5, 1-14 
I/O device specification, 3-24 
lOX, see Input/Output Executive 
IOXLPT, the conflict word, 7-22, 7-23 

JMP instructions, PAL-llA, 3-13 
JSR instruction, PAL-llA, 3-13 
Jump command, ED-ll, 4-7 

Keyboard, Teletype, 2-7 
lOX functions, 7-9, 7-11 

Keys, 
LINE FEED, 4-2, 5-5, 5-15 
RUBOUT, 3-24, .4-12, 7-9 

Kill command, ED-ll, 4-10 

Label field, PAL-llA, 3-3 
Leader/t~ailer tape, 2-8 
LIFO (Last-In-First-Out), 1-9 
Lights on switch register, 2-3 
Lights operation, LPll line printer, 

2-11 
LINE control, Teletype, 2-6 
Line deletion 

ED-ll, 4-10, 4-11, 4-12 
lOX, 7-9 
PAL-llA, 3-24 

LINE FEED key, 4-2, 5-5, 5-15 
Line Printer (LPll), 2-10 

Buffer (LPB), 2-10 
function (IOXLPT only), 7-10 

Line terminator, 4-3 
List commands, ED-ll, 4-4, 4-6 
List errors on teleprinter, 3-24 

X-4 

Listing 
PAL-llA assembly, 3-31 
octal/symbolic, 3-1 

LOAD ADDR switch, 2-2 
Loader, 

Absolute, 6-8 through 6-11 
Bootstrap, 6-2, 6-3, 6-4 

Loading 
Absolute Loader into core, 6-8 
absolute tapes, 6-8 through 6-10 
assembler, 3-23 
Bootstrap Loader into core, 6-3 
characters into printer memory, 2-10 
and dumping core memory, 6-1 
Editor (ED-ll), 4-13, C-4 
ODT, 5-27 
PAL-llA, 3-23 
paper tape, 2-8, 2-9 
unused tape vectors, 9-6 

Load paper tape LSR, 2-7 
Local control, Teletype, 2-6 
Locating breakpoint, ODT-Il, 5-9 
Location change 

ODT-11, 5-4 
ODT-11X, 5-14 

Location counter, PAL-llA, 3-10 
Location references, ODT-ll, 5-3 
Logical operator, PAL-llA, 3-9 
Loop, infinite, 5-10 
LPll Line printer, 2-10, 2-11 
Low-Speed Punch and High-Speed Punch, 

ED-ll, 4-7 
lOX, 7-10 

Low-Speed Reader and High-Speed 
Reader, 7-10 

Mark, ED-ll, 4-3, 4-5~ 4-8 
Mask of search specification, ODT-ll, 

5-11 
Mathematical conversion tables, K-l 
Memory requirements, 1-16 
Misspelled assembler directive, 3-21 
Mnemonic, instruction, 3-3, 3-6, 3-18, 

misspelled, 3-21 
Modes of data address, 1-7 through 1-12 

absolute, 1-12, 3-16, 9-3 
byte, 7-5 
index, 9-4 
lOX, modes, 7-8 through 7-12 
ODT, 5-17 
PAL-llA modes, 3-12 through 3-16 
position independent, 9-2 
summary, 1-11 

Mode forms and codes, 3-17 
Modify Text commands, ED-ll, 4-9, C-2 
Multiple devices, 1-5 
Multiple operands, 3-22 
Multiply-defined symbols, 3-3, 3-26 

Negative numbers, 3-9 
Nested device servicing, 1-14, 1-16 
Next command, ED-ll, 4-7 

,"-

( 

( 

c 

( 



d n. 

( 

( 

( 
\" 

\) 

( 

Non-deferred address modes, 1-8 
summary, 1-11 

Non-deferred autoincrement mode, 1-8 
Non-deferred index mode, 9-4 
Nonexistent command, ED-ll, 4-1 
Non-fatal error codes, lOX, 7-6 
Non-Processor Request I.evel, (NPR), 

1-5 
Null character, 7-9 
Numbers, PAL-IIA, 3-9 

negative, 3-9 
truncation of, 3-9 

Object programs, 3-1 
Octal/decimal conversion tables, K-l 
Octal/symbolic listing, 3-1 
ODT-ll, see On-Line Debugging Tech-

nique 
OFF control, Teletype, 2-6 
OFF (UNLOCK) (punch control), 2-8 
Offsets, .5-13 to 5-16 
On-Line Debugging Technique 

Program, (ODT-ll and ODT-IIX),5-1 
assembling, 5-28 
breakpoints, 5-20 
commands, 5-4 
command syntax, 5-2 
error detection, 5-18 
functions, 5-4 
functional o~ganization, 5-20 
loading procedures, 5-27 
ODT-IIX, 5-1, 5-14 through 5-24 
open locations, 5-4 
program runaway, 5-24 
search, 5-11 
starting and restarting, 5-27, 5-28 
summary, D-l 

ON-LINE light, LPll, 2-11 
ON-LINE/OFF-LINE switch, LPll, 2-11 
ON (LOCK ON) (punch control), 2-8 
ON/OFF (main power) switch, LPll, 

2-11 
Open addressed location, ODT-IIX, 

5-15 
Open command, ED-ll, 4-5 
Opening a location 

ODT-ll, 5-4 
ODT-IIX, 5-14, 5-15 

Operand addressing modes, 1-7 
Operand field, 3-4, 3-18 
Operands, multiple, 3-22 
Operate instructions, PAL-IIA, B-6 
Operating control switches, 2-4 
Operating High-Speed Reader/Punch 

units, 2-8, 2-9 
Operating procedures 

Dump program, 6-13 
ED-ll, 4-12, C-4 
ODT-11, 5-27 
PAL-IIA, 3-23, B-9 

X-5 

Operating Teletype" 2-6 
Operator field, PAL-IIA, 3-3, 

blank, 3-21 
Operators, PAL-IIA, 3-3, 3-8, 3-9 
Organization, functional, ODT, 5-20 
OR operation, 3-9 
Output formats, DUMPTT program, 6-14 
Output from DUMPAB program, 6-14 
Overflow, ED-ll 

page buffer, 4-10, 4-12 
storage area, 4-5 

Overflow of buffer, lOX, 7-9 

Page buffer, ED-ll, 4-4, 4-10, 4-12 
Page size, PAL-IIA, 3-4 
PAL-IIA, see Program Assembly Language 
PAPER STEP switch,LPll, 2-11 
Paper tape creation, ED~ll, 4-14 
Paper tape reader 

controls, 2-7 
loading, 2-8, 2-9 
punch (LSP), 2-8 

Parenthetical groupings of expressions, 
PAL-IIA, 3-8 

Passes, assembler, 3-28 
Patching with TRAP handler, 9-14 
PDP-ll standard abbreviations, J-l 
% (percent) symbol (register 

expression), PAL-IIA, 3-8 
(period) symbol, PAL-IIA, 3-10 

Phase errors, 3-8 
Peripheral device interrupts, 1-6 
PIC (Position Independent Code) 

writing, 9-2, 9-4 
Pointer 

positioning commands, ED-ll, C-l 
relocating, 9-6 

Pointer, address, 1-8 
Position Independent Code (PIC), 9-2 

writing automatic PIC, 9-4 
writing nonautomatic PIC, 9-5 

Position independent modes, 9-2 
POWER light (LPll), 2-11 
Printer, Teletype, 2-6 

control panel, 2-10 
loading characters into memory, 

2-10 
Priority 

of central processor, 1-4 
level ($P), ODT-ll, 5-14 

Priority levels, central processor, 
1-5 

Proceed command, ODT, 5-10, 5-17, 
5-23 

Processor priority levels, 1.,..4 
stack use, 1-14 

Processor Status Register, 1-4 
Processor Status word, 1 .... 6 
Program Counter (PC), 1-6, 1-7, 1-12 

PAL-IIA, 3-11, 3-12 



Program start, 2-5 
Program value, 1-6 
Program Assembly Language (PAL-llA) 

assembling, 1-1 
character set, 3-2, B-1 
error codes, 3-32, 3-33 
expressions, 3-8 
loading, 3-23 
numbers, 3-9 
software error halts, 3-33 
statements, 3-2 

Programs 
object, 3-1 
source, 3-1, 3-2 

Program runaway ODT, 5-24 
Programming considerations, ODT, 5-19 
Programming techniques, 9-1 
PS (Central Processor Status 

Register), 1-4 
Pseudo-ops see Assembler directives 
Punch command, ED-ll, 4-6 
Punch, LoW Speed, 4-7 
Punch functions, 7-10 
Push down lists, 1-9 

? (question mark) usage, ED-ll, 4-1 
" (quotation mark) usage, PAL-llA, 

3-10 

Random access tables, 1-10 
Read command, 

ED-ll, 4-5 
lOX, 7-12 

Reader functions, lOX, 7-10 
Reader/punch, high speed, 2-9 
Reader, reenabling and restarting, 

7-18 
Readr command (real--time Read), lOX, 

7-17 
READY light (LPll), 2-11 
Real-time 

capability, 7-1 
Read, lOX, 7-17 
Write, lOX, 7-18 

Recursive subroutines, 9-11 
References, forward, PAL-llA, 3-7, 

3-8, 3-11 
Register contents, altering, 9-7 
Register displays, 2-2 
Register expression (%),/PAL-llA, 3-8 
Register mode, 1-7, 1-8 i 

PAL-1IA, 3-12 through 3-18 
Registers, 1-7 

symbol assignment, 1-7 
Register symbols, PAL-llA, 3-7 
Relative address mode, 3-16 
Relative addressing, 1-12 

,ODT, 5-13 
Relative branch offset, ODT-llX, 

5-15 

X-6 

RElease (punch control), 2-8 
Relocating ODT, 5-29 
Relocating pointer, 9-5 
Repeat count 

breakpoint, ODT-ll, 5-11 
in proceed command, ODT~llX, 

5-17 
for single-instruction mode, 5-18 

Reserved storage area, 3-11 
Restart 

assembler, PAL-llA, 3-27 
command, lOX, 7-19 
ED-Il, 4-13, 4-14, C-4 
ODT, 5-28 

Return previous sequence, ODT-llX, 
5-15 

Return subroutine, PAL-llA, B-8 
Return from In-terrupt, (RTI) 

instruction, 1-15 
RETURN key, 4-2, 4-14 
Rotate shift instructions, PAL-llA, 

B-5 
RUBOUT key, 3-24, 4-12, 7-9 
RTI (Return from Interrupt) 

instruction, 1-15 
RUN light, 2-4 

Search commands, ED-ll, 4-9, C-2 
Search, ODT-ll, 5-11 

address, 5-12 
limits of, 5-11, 5-12 
mask, ($M), 5-11 
word, 5-12, 5-25 

Seek command, 7-18 
; (semicolon) usage, ODT, 5-3, 5-24 
Sequential address pointer, 1-7 
Serial LA3~ display, L-l 
Setting breakpoint, ODT-ll, 5-8 
Setting up stack pointer, 9-5 
Setting up trap or interrupt 

vector, 9-5 
SHIFT/K (Teletype), 2-7 
SHIFT/M (Teletype), 2-7 
Single buffer transfer on one 

device, lOX, 7-16 
Single instruction mode, 2-5 

cOnlmands, 5-18 
ODT-I1X, 5-17 
repeat count, 5-18 

Single operand instructions, PAL-llA, 
B-4 

S-INST/S-CYCLE switch, 2-3 
Size of page, 3-5 
Slash (/) ODT-ll, 5-4, 5-5 
Software, 1-16 

error halts, 
ED-11 , 4-22 
PAL-11A, 3-33 

SOURCE light, 2-4 

) 

( 

( 

(-

( 



, 
\ 

( 

( 

( 

.'J 

Source program, 3-1, 3-2 
Space characters, PAL-IIA, 3-4 
[ ] (square brackets), 2-7 
Stack operations, 1-9, 1-14 
Stack pointer (SP), 1-7 

setting up, 9-5 
Start program, 2-5 
START (reader control), 2-7 
START switch, 2-3 
Starting and restarting ODT, 5-27 
Starting Text Editor, 4-13, C-4 
Statement, PAL-IIA, 3-2' 

composition of, 3-3 
direct assignment, 3-6, 3-7 

Statement terminator, 3-2 
Status byte, IOX, 7-6;, 7-12, 7-13 

SymbOlS, 
Status Register address, $S, ODT, 5-7 
Text Editor, ED-II, C-3 

Symbol table, PAL-IIA, 3-26 
Symbols used in manual, see preface 
Syntax, assembly language address 

mode, PAl,.-lll~" B-2 
System, see specific subject 

Tab, lOX, 7-9 
Tab characters, PAl,.-l-lA, 3-4 
Tables, 

modification of word, 7-25 
random access, l~lO 

Tape duplication, H-l 
Techniques, coding and programming, done bit, 7-7, 7-:).5, 7-16 

Status Register address ($S) symbol-, 9-1, 9-7 
ODT""'ll, 5-7 

Status register format, 1-4 
STOP (Reader control), 2-7 
Storage area overflow, ED-II, 4-5 
Storage area, reserved, PAL-l:).A, 

3-11. 

Teleprinter functions, 7-10 
Teletype hardware tab facil-ity, 7-24 
Teletype interrupt, ODT, 5-26 
Teletype operation, 2-6 
Terminator statement, 3-2 
Terminator, text mode, 4-8 

Storage Maps, core memory, Testing checksum, Absolute Loader. 6~8 
6-12, 6-15 Te~t Editor Program (EP""ll) 

DUMPAB program, 6-16 onaracter locatiop pointer (Dot), 
Storage requirements, ED~ll, C-4 4-3, 4-7 
Subroutine calls, 1'"'l4, 13..,,8 opmmands, 4-4 thrOl.~gh 4.,.9 
Subrou tines deletion of characters Or lines, 

,condition codes in, 9-8, 13-8 4-10, 4-1l, 4-12 
recursive, 9-11 delimiters, 4-2 
returns, 1-l4, B-8 Dot, 4-3, 4-5, 4-7, 4-8 

Subtraction operator, 3-9 errOr oorrection, 4-12 
Summary of - example, 4-14 through 4-21 

Absolute Loader, E-3 loading ,4,.,.13 
address modes, 1-11 Mark, 4-3, 4-8 
asseIlibly language and assernbl,er, operating procedures, 4-12 

PAL-H, 13:"'1 paper tape creatiOn, 4-14 
Bootstrap Loader, E-l, restarting, 4-14 
FPMP-ll Floating-p"int Math Search commands, 4-8 

Package, 8 ... 1, G-l starting, 4-13 
lOX programming, F-l summary, C'-I 
ODT-ll and ODT: .... IIX, 0-1 symbols, C-3 
Te~t Editor (ED-II), C-l Text mode, 4-1 

SUPPress echo, 7-6 terminator, 4-8 
Switches, Text modification commands, C-2 

console, 2-2 Timeout, lOX, 7-17 
LPll, 2-ll TOP OF FORM switcn, LPll, 2-1l 
operating the control, 2-4 Trace trap instruction, OPT, 5-22, 
switch register, 2-2 5-23 

Switch register, 2-2 through 2-5 TraLLer command, ED-II, 4-7 
Symbols, PAL-IIA, 3-5 Transfer commands, bU:Efer arrange,... 

forward reference to register, 3-8 ment in, lOX, 7 .... 4 
multiple definition of, 3-3, 3-26 Trap handler, patching with, 9-14 
permanent, 3-6 Trap instructions, 3-19 
register, 3-7, 3-8 ODT, 5-22, 5-23 
undefined, 3-7 PAL-lIA, 13-6 
user defined, 3-6 Trap vectors, 3-33, 9-7 
See also the specific subjeot loading unused, 9-6 

setting up, 9-5 



Traps, 1-15 
Truncation of numbers, PAL-llA, 3-9, 

3-19 
Truncation of line, rox, 7-7 
TTY SAVE routine, ODT, 5-26 
Typing errors, PAL-llA, 3-23 

Undefined direct assignments, 3-26 
Undefined symbols, PAL-llA, 3-7, 3-26 
Unformatted Ascrr mode, rox, 7-11 
Unformatted binary mode, rox, 7-12 
Unibus, 1-5 
Unstructured data addressing, 1-7 
t (up arrow), ODT-ll, 5-6, and 

ODT-llX, .5,...15 

Value, program counter, 1-6 
Vectors, 

address interrupt, 1-15 
trap, 3-33, 9-7 

VT~5 display, L-l 

Waitr (Wait Return) command, rox, 7-14 
vs. testing buffer done bit, 7-15 

WHole (search command), ED-ll, 4-9 
.WORD assembler directive, 3-20 
Word addressing, 1-6 
Word search, ODT, 5-12, 5-25 
Write command, rox, 7-13 
Writing PAL-llA assembly language 

programs, 3-1 
Writing position-independent code 

(prC), 9-2 
automatic, 9-4 
non-automatic, 9-5 

Writr (Real-time Write) command, rox, 
7-18 

X-8 

( 

( 

( 

(\ 



( 

( 

c 

( 

( 

HOW TO OBTAIN SOFTWARE INFORMATION 

Announcements for new and revised software, as well as programming notes, 
software problems, and documentation corrections are published by Software 
Information Service in the following newsletters. 

Digital Software News for the PDP-8 & PDP-12 
Digital Software News for the PDP-II 
Digital Software News for the PDP-9/15 Family 

These newsletters contain information applicable to software available from 
Digital's Program Library, Articles in Digital Software News update the 
cumulative Software Performance Summary which is contained in each bdsic 
kit of system software for new computers. To assure that the monthly Digital 
Software News is sent to the appropriate software contact at your installation, 
please check with the Software Specialist or Sales Engineer at your nearest 
Digital office. 

Questions or problems concerning Digital's Software should be reported to 
the Software Specialist. In cases where no Software Specialist is available, 
please send a Software Performance Report form with details of the problem to: 

Software Information Service 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

These forms which are provided in the software kit should be fully filled out 
and accompanied by teletype output as well as listings or tapes of the user 
program to facilitate a complete investigation. An answer will be sent to the 
individual and appropriate topics of general interest will be printed in the 
newsletter. 

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the 
nearest Digital Field office or representative. U.S.A. customers may order 
directly from the Program Library in Maynard. When ordering, include the 
code number and a brief description of the software requested. 

Digital Equipment Computer Users Society (DECUS) maintains a user library 
and publishes a catalog of programs as well as the DECUSCOPE magazine 
for its members· and non-members who request it. For further information 
please write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-1(­
Maynard, Massachusetts 01754 



r-) 

( 

( 

( 

( 



( 

(' 
\ 

t 

READER'S COMMENTS 

DEC-II-XPTSA-A-D 
PDP-ll PAPER TAPE SOFTWARE 
PROGRAMMING HANDBOOK 

NOTE: This form is for document comments only. Problems 
with software should be reported on a Software 
Problem Repcrt (SPR) form (see the HOW TO OBTAIN 
SOFTWARE INFORMATION page). . 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language progr·ammer 

o Higher-level language programmer 

[J Occasional programmer (experienced) 

o user with little programming experience 

o Student programmer 

CJ Non-programmer interested in computer concepts and capabilities 

Name __ ~ __ ~ ________ ~ ________ ~ ________ ~_Date __________ ~ __ ~ ________ _ 

Organization ______ ~ ______________________ ~ ___________________ __' __ __ 

.City "'<"'-. ~~'--____________________ Sta te ____________ Z ip Code ___________ ~ 
or 

Country 

If you do not require a written reply, please. check here. 0 



- - - - - - - - - - - - - - - - Fold Here - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPL YMAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STAH'S 

Postage will be paid by: 

mamaD!a 
Digital Equipment Corporation 
Software Information Services 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 
MAYNARD. MASS. 

I 

( 

() 

( 

tl 

( 





DIGITAL EQUIPMENT CORPORATION 
MAYNARD, MASSACHUSETTS 01754 


