PDP-11

PAPER TAPE SOFTWARE
PROGRAMMING HANDBOOK

e

| PDP-11
PAPER TAPE SOFTWARE
PROGRAMMING HANDBOOK

The software described in this manual is
furnished to the purchaser under a license
for use on a single computer system and can
be copied (with inclusion of DEC's copyright
notice) only for use in such system, except
as may otherwise be provided in writing by
DEC.

For additional copies. order No. DEC-11-XPTSA-A-D from Digital Equipment

Corporation, Software Distribution Center, Bldg. 1-2, Maynard, Mass.

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

First Edition, April 1970 <;*
Revised, March 1971
Revised, January 1972

Revised, February, 1973

Your attention is invited to the last two pages of this
document. The "How To Obtain Software Information" page
tells you how to keep up-to-date with DEC's software.

The "Reader's Comments" page, when filled in and mailed,
is beneficial to both you and DEC; all comments received
are considered when documenting subsequent manuals.

Copyright @ 1970, 1971, 1972, 1973 by Digital Equipment
Corporation

Technical Changes from the previous version (DEC-11-GGPC-D)
are indicated with a bar in the margin of the appropriate ()
page.

Supporting and referenced documents:

PDP-11 BASIC Programming Manual
(order: DEC-11-XBPMA-A-D)

Copies are available from DEC's Software Distribution Center, ()
Building 1-2, Maynard, Massachusetts 01754 -

Teletype is a registered trademark of the Teletype
Corporation

The following are registered trademarks
of Digital Equipment Corporation.

DEC PDP ,

FLIP CHIP FOCAL (
COMPUTER LAB - DIGITAL (logo)

OMNIBUS UNIBUS

ii 1/75-15

PREFACE

This Handbook contains descriptions of the Paper Tape Software for
the PDP-11 system. With this information you can load, dump, edit, assem-
ble, and debug PAL-11A Assembly Language programs. Math routines and
input/output functions are also available to facilitate your programming
efforts.

The table of contents in the front of the Handbook directs you to the
chapter of the system program desired. There you will find a detailed
table of contents for reference while working with that chapter. For

locating items in still more detail, an Index concludes the Handbook.

The following symbols, when used herein, have the indicated meanings:

) denotes pressing the RETURN key, or indicates an ASCII
carriage return;

¥ denotes pressing the LINE FEED key, or indicates an
ASCII line feed;

A denotes pressing the SPACE bar, or indicates an ASCII
space;

—-| denotes typing CTRL/TAB, or indicates an ASCII tab.
Other documentation conventions are:

1. Unless otherwise indicated, a line of user input is terminated
with the RETURN key.

2. When the distinction is useful, system printout is underlined

and user input is not underlined.

3. CTRL/U denotes holding down the CTRL key while typing the U key,
as when using the SHIFT/key combination. The slash is shown merely to
tie the actions together. CTRL is also used with certain other keys,
e.g., CTRL/P. The use of the CTRL/key combinations usually prints a 4
and the key typed, e.g., CTRL/U echoes 4U on the printer when using ED-11
or IOX.

iii

CONTENTS

CHAPTER

1 Programming the PDP-11 System

2 The System Configuration

3 Writing PAL-11A Assémbly Language
Programs : . i

4 Editing the Source Program

5 Debugging Object Programs On-Line

6 Loading and Dumping Core Memory

7 Input/Output Programming

8 Floating-Point and Math Package Overview

9 Programming TechniQﬁes |

APPENDIX

A ASCII Character Set

B PAL-11A Assembly Language and
Assembler

C Text Editor, ED-11

D Debugging Object Programs On-Line, ODT-1l
and ODT-11X ‘

E Loading and Dumping Core Memory

F Input/Output Programming, IOX

G Summary of Floating-Point and Math
Package, FPMP-11

H Tape Duplication |

I Assembling the PAL-11A Assembler

J Standard PDP-11 Abbreviations

K Conversion Tables

TABLE

FIGURE

Instruction Operand Fields

PDP-11 System Block Diagram
Processor Status Register
PDP-11 System Unibus Block Diagram

Illustration of Push and Pop
Operations

Nested Device Servicing

The PDP-11 Console

ASR-33 Teletype Console

ASR-33 Teletype Keyboard
High-Speed Péper Tape Reader Punch
Line Printer Control Panel

ODT Communication and Data Flow
Bootstrap Loader Instructions

Loading and Verifying the Bootstrap
Loader

Loading Bootstrap Tapes into Core
The Bootstrap Loader Program
Bootstrap Tape Format

ioading with the Absolute Loader

Dumping Using DUMPAB or DUMPTT

vi

1-5

1-10

1-16

2-1

2-6

/7 N

CHAPTER 1
PROGRAMMING THE PDP-11 SYSTEM

1.1 INTRODUCTION Taq
a2 SYSTEM FACILITIES 1-1
153 STATUS REGISTER FORMAT i1
1.4 UNIBUS 1=-5
1395 DEVICE INTERRUPTS 1-5
1.6 INSTRUCTION SET yoe
1557 ADDRESSING 1=6
7l Registers Ji=27.
1855752 Address Pointers 1-8
Lo7ss Stack Operations 1-9
1744 Random Access of Tables 1-10
75 Summary of Address Modes 1=11
eSS <10 Accessing Unstructured Data S
143 INSTRUCTION CAPABILITY 1=13
115 PROCESSOR USE OF STACKS 1=14
L) Al Subroutines 1-14
15 9852 Interrupts 1-14
HECI! Traps =158
1510 PAPER TAPE SYSTEM SOFTWARE 1-16

CHAPTER 1

PROGRAMMING THE PDP-11 SYSTEM

1.1 INTRODUCTION

The PDP-11 is a 16-bit, general-purpose, parallel-logic computer using
two’s complement arithmetic. Programmers can directly address 32,768
1l6-bit words, or 65,536 8-bit bytes. All communication between system
components is done on a single high-speed bus called the Unibus.
Standard features of the system include eight general-purpose registers
which can be used as accumulators, index registers, or address pointers;
and a multi-level automatic priority interrupt system. A simplified

block diagram of the PDP-11 System is presented in Figure 1-1.

This chapter gives the PDP-11 programmer an overview of system architec-
ture, points out unique hardware features, and presents programming
concepts basic to the use of the PDP-1l. Following this is a short sum-

mary of DEC-supplied PDP-11 software.

1.2 SYSTEM FACILITIES

The architecture of the PDP-11 system and the design of its central pro-

cessor provide:

® single and double operand addressing
e full word and byte addressing

e simplified list and stack processing through auto-address
stepping (autoincrementing and autodecrementing)

® eight programmable general-purpose registers

LINE
PRINTER

CUSTOMER
EQUIPMENT

PAPER
TAPE

STATUS REGISTER

PRIOR | TN

7

VAN

5

zZjvic
o]

"UNIBUS

OTHER
DEVICES

UNIBUS
CONTROL
8
PRIORITY
ARBITRATION

ARITHMETIC
UNIT

EIGHT
GENERAL
PURPOSE

REGISTERS

CORE
MEMORY.

TTY

Figure 1-1.

N

N

CENTRAL PROCESSOR

|

PDP-11 SYSTEM BLOCK DIAGRAM

data manipulation directly within external device
registers

addressing of device registers using normal memory
reference instructions

asynchronous operation of memory, processor and
I/0 devices

a hardware interrupt priority structure for peri-
pheral devices

automatic interrupt identification without device
polling

cycle stealing direct memory access for high-speed
data transfer devices

direct addressing of 32K words (65K bytes).

Two design features of the central processor serve to increase

system throughput:

The eight programmable general-purpose registers within
the central processor can be used to store data and
intermediate results during the execution of a sequence
of instructions. Register-to-register addressing

provides reduced execution time for most instructions.

The ability to code two addresses within a single

instruction allows operations on data within memory.
This eliminates the need to load processor registers
prior to data operations, and greatly reduces fetch

and store operations.

1.3 STATUS REGISTER FORMAT

The Central Processor Status Register (PS) contains in-
formation on the current priority of the processor, the result
of previous operations, and an indicator for detecting the
execution of an instruction to be trapped during program de-
bugging. The priority of the central processor can be set
under program control to any one of eight levels. This in-
-formation is held in bits 5, 6, and 7 of the PS. Four bits
are assigned to monitor different results of previous instruc-

tions. These bits are set as follows:

Z -- if the result was zero
N -- if the result was negative
C -- if the operation resulted in a carry from

the most significant bit
V -- if the operation resulted in an arithmetic

overflow

The T bit is used in program debugging and can be set or
cleared under program control. If this bit is set when an
instruction is fetched from memory, a processor trap will

occur at the completion of the instruction's execution.

TN

1 processor
unFsed priority T N Z \Y
1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 1-2. Processor Status Register

1.4 UNIBUS

The Unibus is a key component of the PDP-11's unique architecture.
The Central Processor, memory, and all peripheral devices share
the same bus. This means that device registers can be addressed
as memory, and data transfers from input to output devices can
by-pass the processor. No special I/O instructions exist. All

PDP-11 instructions are available for I/0 operations.
< UNIBUS . . >
4

READ
PAPER CUSTOMER
ONLY TELETYPE DISK
MEMORY TAPE EQUIPMENT e o e

CENTRAL READ/ WRITE
PROCESSOR MEMORY

Figure 1-3 PDP-1l System Unibus Block Diagram

1.5 DEVICE INTERRUPTS

Interrupt request lines provide for device interrupts at

processor priority levels 4 through 7. Attachment of a device

to a specific line determines the device's hardware priority.
vSince multiple devices can be attached to a specific line, the
priority for each is determined by position; devices closer to the

Central Processor have higher priority.

Direct memory devices, such as disk units, transfer data at the
Non-Processor Request level (NPR) which has a higher priority
than the interrupt request lines. Data transfers between such

devices and core memory are overlapped with Processor operations.

1-5

Peripheral device interrupts are linked to specific core memory (
locations, or "interrupt vectors", in such a way that device

polling is eliminated. When an interrupt occurs, the interrupt

vector supplies a new Processor Status word (i.e., new contents for

the Processor Status register) and a new value for the Program

Counter. The new PC value causes execution to start at the proper)

handler at the priority level indicated by the new Status register.

1.6 INSTRUCTION SET (

' The instruction set (explained fully in the PDP-11 Processor Handbook:

summarized in Appendix B of this manual) provides operations that

act upon 8-bit bytes and 16-bit words. Coupled with varying

address modes -- Relative, Index, Immediate, Register, Autoincrement, (
or Autodecrement, each of which can be deferred -- more than 40

unique instructions are available. Instruction length is variable --

from one to three 16-bit words, depending upon the addressing

mode (s) used.
1.7 ADDRESSING

Every byte has its own unique address. It is the instruction which
determihes whether 8-bit bytes or 16-bit words are being referenced.
Words are addressed by their low-order (even-numbered) byte.
Although byte addressing can be to odd- or even-numbered

addresses, referencing words at odd-numbered addresses is illegal.
Bits are numbered from 0 at the lowest order bit (20), to 15 (for (

a word) or 7 (for a byte) at the highest order bit (215 or 27).

1-6

Most data in programs is structured in some way; often by means of

tables consisting of the data itself or of addresses which point to

the daa. The PDP-11 handles common data structures with operand address-
ing modes specifically designed for each kind of access. In addition,
addressing for unstructured data permits direct random access to all

of core. The actual formats of the modes are described in Chapter 3,

on the PAL-11 Assembler.

1.7.1 Registers
Addressing in the PDP-11 is done through the general registers. These

registers can be specified by preceding a number in the range 0 to 7
with a %. However, it is common practice to assign to symbols the
register identities; often R0=%0, R1=%1, etc. Throughout this manual,
reference to RO, Rl, etc., as well as SP and PC, assumes such prior
direct assignment. (See Chapter 3, Section 3.3.4.) All eight general
registers are accessible to the programmer, but two of these have addi-
tional specialized functions (discussed below). R6 is the processor

Stack Pointer (SP), and R7 is the Program Counter (PC).

To make use of a register as an accumulator, index register, or sequential
address pointer, data needs to be transferable to and from the register.

This is accomplished with Register Mode, which specifies that the in-

struction is to operate on the contents of the indicated register itself.

For example:

CLR R3 ;CLEAR REGISTER 3 OF ITS CONTENTS

1.7.2 Address Pointers

The instruction can be made to interpret the register contents

as the address of the data to be operated upon, by specifying that

Register Mode be deferred. For example, if register 3 contains 1000

CLR (R3) or CLR @R3

will clear the address 1000. Moreover, if it is desired to perform

the instruction successively upon data at sequential addresses (i.e.,

in a table), Autoincrement Mode can be selected. This will auto- ('
matically increment the contents of the register, after its use as a |
pointer to the next sequential byte or word address. Note that Auto-
increment Mode (as well as Autodecrement Mode, mentioned below) is

automatically deferred one level to cause the register contents to

function as a pointer. (

When it is specified that Autoincrement Mode be deferred, it is de-

ferred two levels so that the instruction interprets the autoincremented

sequential locations as a table of addresses rather than as a table of

data, as in nondeferred Autoincrement Mode. The instruction then <’)

operates upon the data at the addresses specified by the table entries.

Each execution of the following ADD instructions increments the value
of the register contents by two, to the next word address (always an

even number).

ACCUM: ADD (R@)+,(R1)+ ;IF Rg INITIALLY CONTAINS 1094,

. ;AND R1 INITIALLY CONTAINS 1454,

. ; THE VALUES AT LOCATIONS 1@04,

. ;1992, ETC., ARE ADDED TO THOSE AT

. ; LOCATIONS 145¢, 1452, ETC., AND

. ; THE RESULT STORED AT 145@, ETC. (
JMP ACCUM

ACCUM: ADD @ (R3)+,R2 ;IF R3 INITIALLY CONTAINS 109%,
. ;AND LOCATION 18@@ CONTAINS 342f,
; THE VALUE AT LOCATION 342¢ IS
;ADDED TO THE CONTENTS OF R2 AND
. ; THE RESULT IS STORED THERE. AT
; NEXT EXECUTION OF THE INSTRUC-
. ; TION, R3=1@p2.
JMP ACCUM

Byte instructions (such as TSTB (R2)+) using Autoincrement

Mode, increment the register contents by one.

In addition to this capability of incrementing a register's
contents after their use as a pointer, an address mode comple-

mentary to this exists. Autodecrement Mode decrements the contents

of the specified register before the contents are used as a
pointer. This mode, too, can be deferred an additional level if

the table contains addresses rather than data.

1.7.3 Stack Operations

Both Autoincrement and Autodecrement Modes are used in stack
operations. Stacks, also called push-down or LIFO (Last4In—
First-Out) lists, are important for temporarily saving values
which might otherwise be altered. Their characteristic is that
the most recent piece of data saved is the first to be restored.
The PDP-11 processor makes use of stack structure to save and
restore the state of the machine on interrupts, traps, and sub-
routines (see below). To save, data is "pushed" onto a stack
by autddecrementing the contents of a register (e.g., MOV R3,-(R6));
to restore, data is "popped" from a stack by autoinérementing
(e.g., MOV (R6)+,R3). The register being used as the Stack

Pointer always points to the top word of the stack.

1-9

EO E1

/

CORE
MEMORY EO
1. AN EMPTY, 2. PUSHING A 3. PUSHING ANOTHER
STACK DATUM ONTO DATUM ONTO THE
THE STACK STACK
//EZ E2 ’/ES E3
E1 E1 E1 E1
EO EO EO EO
4. ANOTHER 5.POP 6. PUSH 7. POP
PUSH

Figure 1-4. 1Illustration of Push and Pop Operations

1.7.4 Random Access of Tables

Direct access to an entry in the middle of a stack, or indeed
any kind of table, is accomplished through Index Mode. The
contents of a register are added to a base (fetched from the
word or second word following the instruction) to calculate an
address. With this facility, a fixed-order element of several

tables, or several elements of a single table may be accessed.

addresses e.g., if R3

TABLE OF WORDS of entries __contains Operand code
TBLL:]« TBL1 g
é TBL1+2 2
¢ TBL1+4 4 TBL1 (R3)
&« TBL1+6 6 X in each case
& TBL1+1f 19
4

When deferred Index Mode is specified (e.g., @TBL1(R3)), the

calculated address contains a pointer to the data, rather than

the data itself. Byte tables are discussed in Section 1.8.

1.7.5 Summary of Address Modes

The address modes may now be summarized as follows:

Non-deferred Modes

Assembler

Syntax Mode
Rn Register

(Rn) + Autoincrement

- (Rn) Autodecrement
A(Rn) Index

Deferred Modes

Assembler

Syntax Mode

@Rn or (Rn) Deferred Ragister

@ (Rn)+ Deferred Auto-
increment

@-(Rn) Deferred Auto-
decrement

@A (Rn) Deferred Index

1.7.6 Accessing Unstructured Data

\
|
Typical Use ‘
Accumulator j
Sequential pointer to data |
in a table; popping data 1
off a stack
Sequential pointer to data in
a table; pushing data on a stack.
Random access to stack or
table entry.

Typical Use

Pointer to an address
Sequential pointer to addresses
in a table; popping address

pointers off a stack.
Sequential pointer to addresses
in a table; pushing address
pointers on a stack
Random access to table of
address pointers.

Addressing of unstructured data becomes greatly facilitated through

the use of the Program Counter (R7) as the specified register in (
these modes. This is particularly true of Autoincrement and Index
Modes, which are mentioned below, but discussed more fully in Chapter 3,

the PAL~-11 Assembler.

Autoincrement Mode using R7 is the way immediate data is assembled.
This mode causes the operand itself to be fetched from the word (or
second word) following the instruction. It is designated by preceding
a numeric or symbolic value with #, and is known as Immediate Mode. (
The instructibn
ADD #50,R3
causes the value 5ﬂ8 to be added to the contents of register 3.
If the # is preceded by @, the immediate data is interpreted as an

absolute address, i.e., an address that remains constant no matter (

where in memory the assembled instruction is executed.

Index Mode using R7 is the normal way memory addresses are assembled.

This is relative addressing because the number of byte locations between

the Program Counter (which contains the address of the current word+2) ()
and the data referenced (destination minus PC) is placed in the word (or

second word) following the instruction. It is this value that is indexed

by R7 (the Program Counter). ((Destination-PC)+PC=Destination.) Relative

Mode is designated by specifying a memory location either numerically or
symbolically (e.g., TST 188 or TST A).' If a memory address specifica-

tion is preceded by @, it is in deferred Relative Mode and the contents

of the location are interpreted by the instruction as a pointer to the

address of the data.

7 N

AN

1.8 INSTRUCTION CAPABILITY

The twelve ways of specifying an operand demonstrate the
flexibility of the PDP-11 in accessing data according to how it
is structured, and even if it is not structured. Each instruc-
tion adds to this versatility by acting on an operand in a way
particularly suited to its task. For example, the task of
adding, moving, or comparing implies the use of two operands in

any of the twelve addressing forms, whereas the task of clearing,

testing, or negating implies only one operand. Examples:

ADD #12,GROUP (R2) CLR R3
MOV MEM1,MEM2 TST SUM
CMP (R4)+,VALUE NEG @-(R5)

Some instructions have counterparts which operate on byte data
rather than on full words. These byte instructions are easily
recognized by the suffixing of the letter B to the word‘instruc-
tion. MOV is one such word instruction; e.g., MOVB #12,GROUP (R2)
would move an 8-bit value of 128 to the 8-bit byte at the address
specified. One implication of byte instructions is that in
Autoincrement or Autodecrement Mode, a table of bytes is being
scannedﬂ The Autoincrement or Autodecrement therefore goes by
one in byte instructions, rather than by two. However, because
of their specialized processor functions, R6 and R7 in these

modés always increment or decrement by two.

Forms other than single- or double-operand instructions include
Operate instructions such as HALT and RESET, which take no
operands; Branch instructions, which transfer program control
under specified conditions (see Section 3.7); Subroutine calls
and returns; and Trap instructions (see Appendix B for complete

instruction set).

1.9 PROCESSOR USE OF STACKS

Because of the nature of last-in-first-out data structures, the
same stack can be used to nest multiple levels of interrupts,

traps, and subroutines.

1.9.1 Subroutines

In Subroutine calls (JSR Reg,Dest) the contents of the specified
register are saved on the stack (the processor always uses R6

as its Stack Pointer) and the value of the PC (return address
following subroutine execution) becomes the new value of the
register. This allows any arguments following the call to be
referenced via the register. The command RTS Reg causes the
return from the subroutine by moving the register value into the
PC. It then pops the saved register contents back into the
register. (Return from a subroutine is made through the same

register that was used in its call.)

1.9.2 Interrupts

When the processor acknowledges a device interrupt request, the

1-14

device sends an interrupt vector address to the processor. The
processor then pushes the current Status (PS) and PC onto the

stack and picks up a new PS and PC (the interrupt vector) from

the address specified by the device. Another acknowledged interrupt
before dismissal will cause the PS and PC of the running device
service routine to be pushed onto the stack and the address and
status of the new service routine to be loaded into the PC and PS.

A process can be resumed by popping the old PC and PS from the Stack

into the current PC and PS with the Return from Interrupt (RTT)

instruction.
1.9.3 Traps

Traps are processor generated interrupts. Error conditions,
certain instructions, and the completion of an instruction fetched
while the T bit was set cause traps. As in interrupts, the
current PC and Status are saved on the stack and a new PC and
Status are loaded from the appropriate trap vector. The instruc-
tion RTI provides for a return from anbinterrupt or trap by

popping the top two words of the stack back into the PC and PS.

1-15

1.PROCESS O IS 0 4.PROCESS 1 0

NTERRUPTED
RUNNING STACK 490 I i 400
POINTER (SP) WITH PC=PC,
POINTING TO AND STATUS=PS;.
LOCATION PO. oo L pg PROCESS IS
PROGRAM STARTED. sp—| Pei
PS1
TE1
TEO
2.INTERRUPT STOPS 0 Py
PROCESS O WITH 400
PC=PCo AND PSO
STATUS = PSg
STARTS PROCESS 1. PO |PROGRAM
sp—| PCO
PSO 5.PROCESS 2 0
PO COMPLETES WITH 400
PROGRAM|- A RTI INSTRUCTION
(DISMISSES
INTERRUPT).
PC IS RESET sp—| TE1
;;r‘l(’)A"Dr(l:J]SAt:DRESET TEO
3.PROCESS 1 USES 0
STACK FOR 400 TO PS;. PCO
TEMPORARY PROCESS 1 RESUMES. 50
STORAGE (TEq, TEy).
PO|PROGRAM|
sp—=| TE1
o]
TEO 6.PROCESS 1
RELEASES THE 400
PCO TEMPORARY
PSO STORAGE HOLDING
PO TEO AND TE1.
PROGRAM sp—| pco
PSO
PO |PROGRAM
7. PROCESS 1 COMPLETES or
" ITS OPERATION WITH A 400

RTI.

PC IS RESET TO PCo

AND STATUS IS SP—PO
RESET TO PSq- PROGRAM
PROCESS O RESUMES.

Figure 1-5. Nested Device Servicing

1.10 PAPER TAPE SYSTEM SOFTWARE

The paper tape system and utility programs described herein require

at least 4K of core memory (except for the 8K version of the

/

PAL-11A Assembler) and an ASR-33 Teletype. ’

7 N

An optional high-speed paper-tape reader and punch is available,
as is a line printer. The operation of these input/output devices

is explained in Chapter 2.

Following are abstracts of the paper-tape software programs des-
cribed in this handbook.

l. Bootstrap Loader -- used to load into core memory,
programs punched on paper tape in bootstrap format.
It is primarily used to load the Absolute Loader and
Dump programs (see Chapter 6).

2. Absolute Loader -- used to load into core memory,
programs punched on paper tape in absolute binary
format. This not only includes the binary tapes of
subsequently listed programs but also any user program
assembled using the PAL-11A Assembler or dumped by
the DUMPAB program (see Chapter 6).

3. PAL-11A -- the absolute assembler for PDP-11 Paper
Tape Software system (see Chapter 3).

4. ED-1l1 -- the text editor for the PDP-11 Paper Tape
Software system. It is primarily ihtended for use
in producing source program tapes, but may be used
for any text generating and editing purposes (see
Chapter 4).

5. ODT-11 and ODT-11X -- these are on-line debugginQ
programs, enabling you to check out any object program.
You can run all or any portion of an object program,
and make corrections or modifications to it by typing

commands to ODT while at the Teletype (see Chapter 5).

1-17

IOX -- which stands for Input/Output Executive, provides asyn-
chronous I/0 service for Teletype I/O devices and the high-
speed paper tape reader and punch. (IOXLPT allows also for a
line printer.) It enables you to write simple I/O requests
specifying devices and data forms to accomplish interrupt-
controlled data transfer concurrently with the execution of a
running user program. It is an integral part of PAL-11lA and

ED-11 (see Chapter 7).

FPMP-1l-~-which stands for Floating-Point and Math Package,
PDP-11, is a comprehensive set of subroutines which enable
you to perform arithmetic operations. The subroutines may

be used by any PDP-11 object program (see Chapter 8 for overview).
DUMPTT and DUMPAB -- are core dump programs which provide

dumping of specified areas of core either in octal on the

Teletype or in absolute binary on paper tape (see Chapter 6).

1-18

f \

CHAPTER 2
THE SYSTEM CONFIGURATION

2.1 PDP-11 CONSOLE 2=-1
2l il Elements of the Console 2-1
2 gl Register Displays 2=2
2 ol Switch Register 2=2
2515103 Indicator Lights 2=3
2 o022 Operating the Control Switches 2-4
2.2 OPERATING THE TELETYPE 2-6
Dl Power Controls 26
26232 Printer 2=6
25 2s3 Keyboard 2%
2.2.4 Paper Tape Reader 2=
215254 5 Paper Tape Punch 2-8
213 OPERATING THE HIGH-SPEED PAPER TAPE READER 2-8
AND PUNCH
2 3% Reader Unit 2-9
232 Punch Unit 2-9
2.4 THE LPll LINE PRINTER 2-10
2.5 INITIALIZING THE SYSTEM 2-12

CHAPTER 2

— THE SYSTEM CONFIGURATION

This chapter explains the operation of the computer console, Teletype,

high-speed reader/punch, and line printer.

2.1 PDP-11 CONSOLE

The PDP-11 console is designed to achieve convenient control of the system.
Through switches and keys on the console, programs and information can be
manually inserted or modified. 1Indicator lamps display the status of the
computer at all times. The PDP-11 console is shown in Figure 2-1, and each
switch, key, and display lamp is explained below.

GGl

ADDRESS REGISTER RUN BUS FETCH EXEC
) I I [T]

DATA SOURCE _ DESTINATION ADDRESS

Elz

;
~— oFF SWiTCH_H 1040 |exam [conT fenasue fs/mar stant
ock | 17 | 6 s faf3f2f e} s 8 7 6 B 4 3 2 1 ? ADDR T A

Figure 2-1. The PDP-1l1l Console

(;,f 2.1.1 Elements of the Console

The console has the following indicators and switches:

1. A bank of eight indicators, indicating the following con-
ditions or operations:

a. Fetch

b. Execute

c. Bus

d. Run

e. Source

f. Destination

g. Address (two bits)

2. An 18-bit ADDRESS REGISTER display
3. A 16-bit DATA Register display

4., An 18-bit Switch Register

5. Control Switches:

a. LOAD ADDR (Load value set in Switch Register into
address register)

b. EXAM (Examine contents of location)
c. CONT (Continue execution)
d. ENABLE/

HALT (Enable or halt execution)

e. S-INST/ (Single Instruction-Single
S=-CYCLE Cycle execution)

f." START (Start execution)
g. DEP (Deposit value set in Switch Register
into specified memory location)

2.1.1.1 Register Displays

The operator's console has an 18-bit ADDRESS REGISTER display and a 16-bit
DATA Register display. The ADDRESS REGISTER display is tied directly to
the output of an 18-bit flip-flop register called the Bus Address Register.
This register displays the address of data examined or deposited.

2.1.1.2 Switch Register

The PDP-11 is capable of referencing 16-bit addresses. However, the Unibus
has expansion capability for 18-bit addresses. Therefore, to access the
entire 18-bit address scheme, the Switch Register is 18-bits wide. These

bits are assigned as 0 through 17. The highest two bits are used only for
addressing.

A switch in the up position is considered to have a 1 value. A switch
in the down position is considered to have a 0 value. The condition of the
switches can be loaded into the ADDRESS REGISTER or any memory location
using the appropriate control switch described below.

1. LOAD ADDR Transfers the contents of the 18-bit
Switch Register into the ADDRESS REGIS-
TER.

2. EXaM Displays the contents of the location

specified by the ADDRESS REGISTER.

T

3. DEP Deposits the contents of the low-order
16-bits of the Switch Register into
the address displayed in the ADDRESS
REGISTER. (This switch is actuated by
raising it.)

4. ENABLE/HALT Allows or prevents running of programs.
' For a program to run, the switch must

be in the ENABLE position (up). Placing
the switch in the HALT position (down)
will halt the system at the end of the
current instruction or cycle, depending
on the position of the S-INST/S-CYCLE
switch.

5. START Begins execution of a program when the
ENABLE/HALT switch is in the ENABLE
position. When the START switch is de-
pressed it asserts a system initializa-
tion signal, actually starting the sys-
tem when the switch is released. The
processor will start executing at the
address which was last loaded by the
LOAD ADDR switch.

6. CONT Allows the computer to continue with-
out initialization from whatever state
" it was in when halted.

7. S-INST/S-CYCLE Determines whether a single instruction
or a single cycle is performed when the
CONT switch is depressed while the com-
puter is in the halt mode.

When the system is running a program, the LOAD ADDR, EXAM, and DEPosit
functions are disabled to prevent disrupting the running program.

2.1.1.3 1Indicator Lights

The indicator lights signify specific computer functions, operations, or
states. Each is explained below.

1. FETCH Indicates that the central processor is
in the state of fetching an instruction.

2. EXECUTE Indicates that the central processor is
in the state of executing an instruction.

3. BUS Indicates that a peripheral is controlling
the bus. It is 1lit when Bus Busy (BBSY)
is asserted, unless the processor (includ-
ing the console) is asserting BBSY.

2-3

4. RUN Indicates that the processor is running.
(While executing a RESET command [20 ms.]
the RUN light is not on,)

5. SOURCE Indicates that the central processor is
obtaining source data. (Not lit when
data is from an internal register.)

6. DESTINATION Indicates that the central processor is
obtaining destination data. (Not 1lit
when data is from an internal register.)

7. ADDRESS Identifies the source or destination ad-
dress cycle of the central processor.
When references to the addresses are made
via the Unibus, the lights tell the com-
puter's source or destination cycle. For
an internal register reference, the address
is always zero.

2.1.2 Operating the Control Switches

When the PDP-11 has been halted at the end of an instruction, it is possible
to examine and update the contents of locations. (You cannot EXAMine or
DEPosit at the end of a single cycle unless the cycle coincides with the
end of the instruction.) To examine a specific location, set the Switch
Register to correspond to the location's address, and press LOAD ADDR,
which will transfer the contents of the Switch Register into the ADDRESS
REGISTER. The location of the address to be examined is then displayed

in the ADDRESS REGISTER. You can then depress EXAM, and the data in that
location will appear in the DATA register.

If you attempt to examine data from or deposit data into a nonexistent
memory location, an error will occur and the DATA register will reflect
location 000004, the trap location for references to nonexistent locations.
To verify this condition, deposit some number other than four in the loca-
tion. If four is still indicated, either nothing is assigned to that loca-
tion or whatever is assigned is not working properly.

By depressing EXAM again, the ADDRESS REGISTER will be incremented by
two to the next word address, and the contents of this next location may be
examined. The ADDRESS REGISTER will always indicate the address of the
data displayed in the DATA register.

TN

The examine function is such that if LOAD ADDR is depressed and then
EXAM, the ADDRESS REGISTER will not be incremented. In this case, the
location reflected in the ADDRESS REGISTER is examined directly. However,
on successive depressings of EXAM only, the ADDRESS REGISTER is incremented.

If you find an incorrect entry in the DATA register, you can enter the
correct data there by putting it in the Switch Register and raising the
DEP switch. The ADDRESS REGISTER will not increment when this data is
deposited. Therefore, by pressing the EXAM switch you can examine (verify)
the data just deposited. However, pressing EXAM again will increment the

register to the next word address.

When doing consecutive examines or deposits, the address will incre-
ment by two, to successive word locations. However, when examining the
general-purpose registers (R0-R7), the system only increments by one.

The reason for this is that once the Switch Register is set properly, you
can use the automatic stepping feature of EXAM to examine general-purpose

registers from the computer console.

‘ To start a program after it is loaded into core, load the starting
address of the program into the Switch Register, press LOAD ADDR, and
after ensuring that the ENABLE/HALT switch is in the ENABLE position, de-
press START. The program should start to run as soon as the START switch

is released.

Normally, when the system is running, not only will the RUN light be
on but other lights (FETCH, EXECUTE, SOURCE, etc.) will be flickering. If
the RUN light is on and none of the other lights are flickering, the system
could be executing a WAIT instruction which waits for an interrupt.

While in the halt mode, if you wish to do a single instruction, place
the S-INST/S-CYCLE switch in the S-INST position and depress CONT. When
CONT is pressed, the console momentarily passes control to the processor,
allowing it to execute one instruction before regaining control. Each time
the CONT switch is pressed the computer will execute one instruction. If

you wish to have the computer perform a single cycle, place the S-INST/S-
CYCLE switch in the S-CYCLE position and press CONT. The computer will

then perform one complete cycle and halt.

To start the program again, place the ENABLE/HALT switch in the ENABLE
position and press CONT.

2.2 OPERATING THE TELETYPE

The ASR-33 Teletype (TTY) is the basic input/output device for PDP-11 com-
puters. It consists of a printer, keyboard, paper tape reader, and paper
tape punch, all of which can be used either on-line under program control or

off-line. The Teletype controls (Figure 2-2) are described as they apply
to the operation of the computer.

OFF

REL.

ON

START ~
STOP -
FREE -

OFF
Line (O LocaL

(TTY switch)
Figure 2-2. ASR-33 Teletype Console

2.2.1 Power Controls

LINE - The Teletype is energized and connected to
the computer as an input/output device, under
computer control.

OFF - The Teletype is de-energized.
LOCAL - The Teletype is energized for off-line opera-
tion.

2.2,2 Printer

The printer provides a typed copy of input and output at 10 characters per
second, maximum.

2-6

N\

N

2.2.3 Keyboard

The Teletype keyboard is similar to a typewriter keyboard. However, cer-
tain operational functions are shown on the upper part of some of the key-
tops. These functions are activated by holding down the CTRL key while
depressing the desired key. For example, when using the Text Editor,
CTRL/U causes the current line of text to be ignored.

Although the left and right square brackets are not visible on the
keyboard keytops, they are shown in Figure 2-3 and are generated by typing
SHIFT/K and SHIFT/M, respectively. The ALT MODE key is identified as ESC
(ESCape) on some keyboards.

OOOOOOLOOLOOG
WOOEEHLLOOO®®
ODOOROLLOHOO®®E
QOOOOOOOOO)

|

SPACE

o ®

Figure 2-3. ASR-33 Teletype Keyboard

2.2.4 Paper Tape Reader

‘ The paper tape reader (LSR) is used to read data punched on eight chan-
nel perforated paper tape at a rate of 10 characters per second, maxi-
mum. The reader controls are shown in Figure 2-2 and described below.

START Activates the reader; reader sprocket wheel
is engaged and operative.

STOP Deactivates the reader; reader sprocket wheel
is engaged but not operative.

FREE Deactivates the reader; reader sprocket wheel
is disengaged. ’

The following procedure describes how to properly position paper tape
in the low-speed reader.

a. Raise the tape retainer cover.

2=7

b. Set reader control to FREE.

c. Position the leader portion of the tape over the read (
pens with the sprocket (feed) holes over the sprocket
(feed) wheel and with the arrow on the tape (printed
or cut) pointing outward.

d. Close the tape retainer cover.

e. Make sure that the tape moves freely.

f. Set reader control to START, and the tape will be read.

2.2.5 Paper Tape Punch

The paper tape punch (LSP) is used to perforate eight-channel rolled
oiled paper tape at a maximum rate of 10 characters per second. The (

punch controls are shown in Figure 2-2 and described below.

RELease Disengages the tape to allow tape removal or
loading.
B.SP Backspaces the tape one space for each firm

depression of the B.SP button.
ON (LOCK ON) Activates the punch. (

OFF (UNLOCK) Deactivates the punch.
Blank leader/trailer tape is generated by:

1. Turning the TTY switch to LOCAL

2. Turning the LSP on (\
3. Typing the HERE IS key

4. Turning the LSP off

5. Turning the TTY switch to LINE.

2.3 OPERATING THE HIGH-SPEED PAPER TAPE READER AND PUNCH UNITS

A high-speed paper tape reader and punch unit is pictured in Figure 2-4

and descriptions of the reader and punch units follow.

TN

PN

2.3.1 Reader Unit

The high-speed paper tape reader is used to read data from eight-channel
fan-folded (non-oiled) perforated paper tape photoelectrically at a maxi-
mum rate of 300 characters per second. Primary power is applied to the
reader when the computer POWER switch is turned on. The reader is under
program control. However, tape can be advanced past the photoelectric

sensors without causing input by pressing the reader FEED button.

2.3.2 Punch Unit

The high-speed paper tape punch is used to record computer output on eight-
channel fan-folded paper tape at a maximum rate of 50 characters per second.
All characters are punched under program control from the computer. Blank
tape (feed holes only, no data) may be produced by pressing the FEED button.
Primary power is available to the punch when the computer POWER switch is

turned on.

N
O PUNCH
e o 3 FEED
READER
e ON LINE
/ CI- FEED
— y,
7 7
PAPER TAPE OFF LINE

Figure 2-4. High-Speed Paper Tape Reader/Punch

Paper tape is loaded into the reader as explained below.

1. Raise tape retainer cover.

2. Put tape into right-hand bin with channel one of
the tape toward the rear of the bin.

3. Place several folds of blank tape through the
reader and into the left-hand bin.

2-9

4. Place the tape over the reader head with feed
holes engaged in the teeth of the sprocket wheel.

5. Close the tape retainer cover.
6. Depress the tape feed button until leader tape is
over the reader head.
CAUTION
Oiled paper tape should not be used
in the high-speed reader or punch -

0il collects dust and dirt which can
cause reader or punch errors.

2.4 THE LP1ll LINE PRINTER

The LP1ll is a line printer with 80 column capacity, capable of printing
more than 300 lines per minute at a full 80 columns, and more than 1100
lines per minute at 20 columns. The print rate is dependent upon the data

and the number of columns to be printed.

Characters are loaded into the printer memory via the Line Printer
Buffer (LPB) serially. When the memory becomes full (20 characters) the :
characters are automatically printed. This continues until the 80 columns (

have been printed or a carriage return, line feed, or form feed character

is recognized.

Figure 2-5 illustrates the printer control panel on which are mounted

three indicator lights and three toggle switches.

—

ON LINE

@ 6 ©

TOP PAPER OFF LINE

I (

Figure 2-5. Line Printer Control Panel
2-10

TN

AN

Operation of the lights and switches is as follows:

POWER light

READY light

ON LINE light

ON/OFF (main power) switch

TOP OF FORM switch

PAPER STEP switch

ON LINE/OFF LINE switch

Glows red to indicate main power switch
(located inside cabinet) is at ON posi-
tion and power is available to the printer.

Glows white, shortly after the POWER light
goes on to indicate that internal compon-
ents have reached synchronous state and
the printer is ready to operate.

Glows white to indicate that ON LINE/OFF
LINE toggle switch is in ON LINE position.

This switch controls line current to the
printer. To gain access to it, the printer
front panel is unlatched, by pushing the
circular button on the right hand edge,

and opened to the left on its hinges. The
switch is located to the left of center
approximately fourteen inches below the
top. If power is available, the red POWER
light on the control panel will glow when
the switch is positioned at ON.

The switch is on when in the up position.
The ON and OFF labels are printed on the
stem of the switch. A group of two switches
and three indicator lights, above the main
power switch, are for the use of techni-
cians in making initial adjustments to the
printer.

This switch is tipped toward the front of

the cabinet to roll up the form to the top
of the succeeding page. It is spring re-

turned to center position, and produces a

single top-of-form operation each time it

is actuated. The switch is effective only
when the printer is off line.

Operates similarly to TOP OF FORM but pro-
duces a single line step each time it is
actuated. It is only effective with
printer off line.

This two-position toggle switch is spring-
returned to center. When momentarily posi-
tioned at ON LINE it logically connects the
printer to the computer and causes the ON
LINE light to glow. Positioned momentarily
at OFF LINE, the logical connection to the
computer is broken, the ON LINE light goes
off, and the TOP OF FORM and PAPER STEP
switches are enabled.

2-11

2.5 INITIALIZING THE SYSTEM

Before using the computer system, it is good practice to initialize all units (;_

as specified below.

Qe

b‘

Main power cord is properly plugged in
Computer POWER key is ON
Console switches are set:

ENABLE/HALT to HALT
SR=000000

Teletype is turned to LINE
Low-speed punch is OFF
Low-speed reader is set to FREE

High-speed reader/punch is ON

The system is now initialized and ready for your use.

2-12

TN

CHAPTER 3
WRITING PAL-11A
ASSEMBLY LANGUAGE PROGRAMS

3.0 ' CHARACTER SET 3-2
i) STATEMENTS 3=2
3.2.1 Label 3=3
3.2.2 Operator 3~3
3.2.3 Operand 3-4
324 Comments Sps
32,05 Format Control 3=5
33 SYMBOLS 3=5
3.3.1 Permanent Symbols 3-6
3.3.2 User-defined Symbols 3-6
3.3.3 Direct Assignment 3-6
3.3.4 Register Symbols 3-7
3.4 EXPRESSIONS 3-8
3.4.1 Numbers 3=9
3.4.2 Arithmetic and Logical Operators 3-9
3.4.3 ASCII Conversion 3-10
3.5 ASSEMBLY LOCATION COUNTER 3=10
3.6 ADDRESSING S=ld
3561 Register Mode 3-12
3.6.2 Deferred Register Mode 3-13
3.6.3 Autoincrement Mode 2%l
3.6.4 Deferred Autoincrement Mode 3=—14
3.6.5 Autodecrement Mode 3=1d
3.6.6 Deferred Autodecrement Mode 3=14
3.6.7 Index Mode =15
3.6.8 Deferred Index Mode 3=15
3.6.9 Immediate and Deferred Immediate Modes 3=15
3.6.10 Relative and Deferred Relative Modes 3-16
3.6.11 Table of Mode Formats and Codes 3= 17
3.7 INSTRUCTION OPERAND FORMS 3-18
BhE fad ASSEMBLER DIRECTIVES g_ig
3.8.1 .EOT e
3.8.2 .EVEN e
3.8.3 .END g
3.8.4 .WORD e
B85 « BYTE
3,8,6 " <ASCII 3-22
2] OPERATING PROCEDURES 3-22
B CRSI Introduction S=0
34942 Loading PAL-11A 3=2'3
3x9e3 Initial Dialogue =3
3.9,4 Assembly Dialogue 3-29
S RS, Assembly Listing =3
3.10 ERROR CODES eoe
3-33

3.11 SOFTWARE ERROR HALTS

CHAPTER 3

o WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

PAL-11A (Program Assembly Language for the PDP-11's Absolute Assembler) is
the "heart" of the PDP-11/20 Paper Tape Software system. It enables you
to write source (symbolic) programs using letters, numbers, and symbols
which are meaningful to you. The source programs, generated either on-
line using the Text Editor (ED~11l), or off-line, are then assembled into
object programs (in absolute binary) which are executable by the computer.
The object program is produced after two passes through the Assembler; an
optional third pass produces a complete octal/symbolic listing of the as-
sembled program. This listing is especially useful for documentation and

. debugging purposes.

This chapter explains not only how to write PAL-11A programs but
also how to assemble the source programs into computer-acceptable ob-
ject programs. All facets of the assembly language are explained and
illustrated with many examples, and the chapter concludes with assem-

_ bling procedures. In explaining how to write PAL-11A source programs

<, ? it is necessary, especially at the outset, to make frequent forward
references. Therefore, we recommend that you first read through the
entire chapter to get a "feel" for the language, and then reread the
chapter, this time referring to appropriate sections as indicated, for

a thoroﬁgh understanding of the language and assembling procedures.

(~ Some notable features of PAL-11A are:
1. Selective assembly pass functions
2. Device specification for pass functions
3. Optional error listing on Teletype
4. Double buffered and concurrent I/0 (provided by IOX)
5. Alphabetized, formatted symbol table listing

The PAL-11A Assembler is available in two versions: a 4K version and

an 8K version.

The assembly language applies equally to both versions. The 4K ver-
Q” ! sion provides symbol storage for about 176 user-defined symbols, and the
8K version provides for about 1256 user-defined symbols (see Section 3.3).

3-1

In addition, the 8K version allows a line printer to be used for the pro-

gram listing and/or symbol table listing.

The following discussion of the PAL-11A Assembly Language assumes

that you have read the PDP-11 Processor Handbook, with emphasis on those

sections which deal with the PDP-11 instruction set, formats, and tim-
ings -- a thorough knowledge of these is vital to efficient assembly

language programming.

3.1 CHARACTER SET

A PAL-11A source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, argument separators, and line
terminators written using the following ASCIIl characters.

1. The letters A through Z. (Upper and lower case letters
are acceptable, although upon input, lower case letters
will be converted to upper case letters.)

2. The numbers 0 through 9.
3. The characters . and $ (reserved for system software).
4. The separating or terminating symbols:

:=% 4@ (), "' +-8!
carriage return tab space line feed form feed

3.2 STATEMENTS

A source program is composed of a sequence of statements, where each state-
ment is on a single line. The statement is terminated by a carriage return
character and must be immediately followed by either a line feed or form
feed character. Should a carriage return character be present and not be
followed by a line feed or form feed, the Assembler will generate a Q

error (Section 3.10) and that portion of the line following the carriage
return will be ignored. Since the carriage return is a required statement
terminator, a line feed or form feed not immediately preceded by a carriage

return will have one inserted by the Assembler.

It should be noted that, if the Editor (ED-11l) is being used to create
the source program (see Section 4.4.4), a typed carriage return (RETURN

lASCII stands for American Standard Code for Information Interchange.

3-2

TN

TN

key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters as ex-

plained below and summarized in Appendix B. The four fields are:
Label Operator Operand Comment

The label and comment fields are optional. The operator and operand
fields are interdependent -- either may be omitted .depending upon the con-
tents of the other. '

3.2.1 Label

A label is a user-defined symbol (see Section 3.3.2) which is assigned the
value of the current location counter. It is a symbolic means of referring
to a specific location within a program. If present, a label always occurs
first in a statement and must be terminated by a colon. For example, if
the current location is 1008, the statement

ABCD: MOV A,B

will assign the value 1008 to the label ABCD so that subsequent reference
to ABCD will be to location 1008. More than one label may appear within

a single label field; each label within the field will have the same value.
For example, if the current location is 100, multiple labels in the state-

ment
ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value

1008. ($ and . are reserved for system software.)

The error code M (multiple definition of a symbol) will be generated

during assembly if two or more labels have the same first six characters.

3.2.2 Operator

An operator follows the label field in a statement, and may be an instruc-
tion mnemonic or an assembler directive (see Appendix B). When it is an

instruction mnemonic, it specifies what action is to be performed on any

3-3

operand (s) which follows it. When it is an assembler directive, it speci-

fies a certain function or action to be performed during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is legally
terminated by a space, tab, or any of the following characters.

+ - @ ("] % ! & , ;
line feed form feed carriage return

The use of each character above will be explained in this chapter.
Consider the following examples:

MOV A,B ;= (TAB) terminates operator MOV
MOV@A,B ;@ terminates operator MOV

When the operator stands alone without an operand or comment, it is
terminated by a carriage return followed by a line feed or form feed charac-

ter.

3.2.3 Operand

An operand is that part of a statement which is operated on by the opera-
tor -- an instruction mnemonic or assembler directive. Operands may be
symbols, expressions, or numbers. When multiple operands appear within a
statement, each is separated from the next by a comma. An operand may be
preceded by an operator and/or label, and followed by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE,BOB ;THIS IS A COMMENT
where the space between MOV and GEORGE terminated the operator field and
began the operand field; the comma separated the operands GEORGE and BOB;

the semicolon terminated the operand field and began the comment.

3-4

(

3.2.4 Comments

The comment field is optional and may contain any ASCII character except
null, rubout, carriage return, line feed or form feed. All other charac-
ters, even those with special significance are ignored by the Assembler

when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a carriage

return followed by a line feed or form feed character. For example,
LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, but
they are useful in program listings for later analysis, checkout or docu-

mentation purposes.

3.2.5 Format Control

The format is controlled by the space and tab characters. They have no

effect on the assembling process of the source program unless they are em-
bedded within a symbol, number, or ASCII text; or are used as the operator
field terminator. Thus, they can be used to provide a neat, readable pro-

gram. A statement can be written
LABEL:MOV(SP)+,TAG;POP VALUE OFF STACK
or, using formatting characters it can be written
LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

which is much easier to read.

Page size is controlled by the form feed character. A page of n lines

is created by inserting a form feed (CTRL/FORM keys on the keyboard) after
the nth line. If no form feed is present, a page is terminated after 56

lines,

3.3 symbols

There are two types of symbols, permanent and user-defined. Both are

3-5

stored in the Assembler's symbol table. Initially, the symbol table con-
tains the permanent symbols, but as the source program is assembled, user-
defined symbols are added to the table.

3.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix B. 3)
and assembler directives (see Section 3.8). These symbols are a permanent
part of the Assembler's symbol table and need not be defined before being

used in the source program.

3.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 3.2.1) or by
direct assignment (see Section 3.3.3). These symbols are added to the sym-
bol table as they are encountered during the first pass of the assembly.
They can be composed of alphanumeric characters, dollar signs, and periods
only; again, dollar signs and periods are reserved for use by the system
software. Any other character is illegal and, if used, will result in the
error message I (see Section 3.11). The following rules also apply to
user-defined symbols:
1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.
3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value as-
sociated with a permanent symbol that is also user-defined depends upon its

use:

1. A permanent symbol encountered in the operator field is as-
sociated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also user-
defined, its user-defined value is associated with the symbol.
If the symbol is not found to be user-defined, then the cor-
responding machine op-code value is associated with the symbol.

3.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When a
direct assignment statement defines a symbol for the first time, that sym-
bol is entered into the Assembler's symbol table and the specified value is
associated with it. A symbol may be redefined by assigning a new value to

a previously defined symbol. The newly assigned value will replace the

3-6

(-

previous value assigned to the symbol.

The general format for a direct assignment statement is
symbol = expression
The following conventions apply:
l. An equal sign (=) must separate the symbol from

- the expression defining the symbol.

2. A direct assignment statement may be preceded by
a label and may be followed by a comment.

3. Only one symbol éan be defined by any one direct
assignment statement. :

TN

4. Only one level of forward referencing is allowed.

Example of the two levels of forward referencing (illegal):

Y
Z
1

~~
N KX
nunn

X and Y are both undefined throughout pass 1 and will be listed on the
printer as such at the end of that pass. X is undefined throughout pass

2, and will cause a U error message.

(k Examples:
A=1 ;THE SYMBOL A IS EQUATED WITH THE VALUE 1
B = 'A-1§MASKLOW ;THE SYMBOL B IS EQUATED WITH THE EXPRES~
. ;SION'S VALUE.
C: D=3 ; THE SYMBOL D IS EQUATED WITH 3. THE
E: MOV #1,ABLE ;LABELS C AND E ARE EQUATED WITH THE
: ;NUMERICAL MEMORY ADDRESS OF THE MOV
;COMMAND.
3.3.4 Register Symbols
(”“\ The eight general registers of the PDP-11 are numbered 0 through 7. These

registers may be referenced by use of a register symbol, that is, a sym-
bolic name for a register. A register symbol is defined by means of a

3-7

direct assignment, where the defining expression contains at least one
term preceded by a % or at least one term previously defined as a register (——

symbol.
RP=%0 ;DEFINE R@F AS REGISTER @
R3=R@+3 ;DEFINE R3 AS REGISTER 3
R4=1+%3 ;DEFINE R4 AS REGISTER 4
THERE=%2 ;DEFINE "THERE" AS REGISTER 2

It is important to note that all register symbols must be defined before
they are referenced. A forward reference to a register symbol will gener-
ally cause phase errors (see Section 3.10).

The % may be used in any expression thereby indicating a reference to
a register. Such an expression is a register expression. Thus, the state- (

ment
CLR %6

will clear register 6 while the statement
CLR 6

will clear the word at memory address 6. In certain cases a register can
be referenced without the use of a register symbol or register expression.
These cases are recognized through the context of the statement and are
thoroughly explained in Sections 3.6 and 3.7. Two obvious examples of this

are: (
JSR 5,SUBR ;THE FIRST OPERAND FIELD MUST
;ALWAYS BE A REGISTER.
CLR X(2) ;ANY EXPRESSION ENCLOSED IN

; () MUST BE A REGISTER. 1IN
;THIS CASE, INDEX REGISTER 2.

3.4 EXPRESSIONS

Arithmetic and logical operators (see Section 3.4.2) may be used to form

expressions. A term of an expression may be a permanent or user-defined

TN

symbol, a number, ASCII data, or the present value of the assembly loca-
tion counter represented by the period. Expressions are evaluated from

left to right. Parenthetical grouping is not allowed.

3-8

TN

Expressions are evaluated as word quantities. The operands of a
.BYTE directive (Section 3.8.5) are evaluated as word expressions before
truncation to the low-order eight bits.

A missing term or expression will be interpreted as 0. A missing
operator will be interpreted as +. The error code Q (Questionable syntax)

will be generated for a missing operator. For example,

A + -109 ;OPERAND MISSING

"will be evaluated as A + 0 - 100, and

TAG ! LA 177777 ;OPERATOR MISSING
will be evaluated as TAG ! LA+177777.

3.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers con-
sist of the digits 0 through 7 only. Decimal numbers consist of the digits
0 through 9 followed by a decimal point. If a number contains an 8 or 9

and is not followed by a decimal point, the N error code (see Section 3.10)
will be printed and the number interpreted as decimal. Negative numbers

may be expressed as a number preceded by a minus sign rather than in a two's
complement form. Positive numbers may be preceded by a plus sign although

this is not required.
If a number is too large to fit into 16 bits, the number is truncated
from the left. In the assembly listing the statement will be flagged with

a Truncation (T) error.

3.4.2 Arithmetic and Logical Operators

The arithmetic operators are:

+ indicates addition or a positive number

- indicates subtraction or a negative number

The logical operators are defined and illustrated below.

& indicates the logical AND operation

! indicates the logical inclusive OR operation

3-9

Fsp = g g1 g = g
g&l = @ g11 = 1
lsgdg = @ 119 = 1
l1&l1l =1 1!'1 = 1

3.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null, rubout,

carriage return, line feed, or form feed) is assigned the 7-bit ASCII value

of the character (see Appendix A). For example,
'A

is assigned the value 1018.

When preceded by a quotation mark, two ASCII characters (not includ-

ing null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each 7-bit
value is stored in an 8-bit byte and the bytes are combined to form a

word. For example, "AB will store the ASCII value of A in the low-order

(even) byte and the value of B in the high-order (odd) byte:

high-order byte : low-order byte
|
|
B's value = 1 0 2 ‘ 1 0 1 = A's value
o 160 061 oor ooo o1
0 4 1 1 0 1
"AB = g411g1

3.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter.

(Note dif-

ference of Program Counter. . # PC.See Section 3.6.) When used in the

operand field of an instruction, it represents the address of the first

word of the instruction. When used in the operand field of an assembler:

directive, it represents the address of the current byte or word.

ample,

For ex-

I//_\ "

A: MOV #.,R@ ;. REFERS TO LOCATION A, I.E.,
; THE ADDRESS OF THE MOV INSTRUCTION

(# is explained in Section 3.6.9).

At the beginning of each assembly pass, the Assembler clears the loca-
tion counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the location where the object data
is stored may be changed by a direct assignment altering the location count-

er.
.=expression

The expression defining the period must not contain forward references

or symbols that vary from one pass to another. Examples:

-=509

FIRST: MOV .+10,COUNT ; THE LABEL FIRST HAS THE VALUE 5008
; .+10 EQUALS 5108. THE CONTENTS
;OF THE LOCATION 5108 WILL BE DE-
;POSITED IN LOCATION COUNT.

=520 ; THE ASSEMBLY LOCATION COUNTER NOW
;HAS A VALUE OF 5208.

SECOND: MOV . ,INDEX ; THE LABEL SECOND HAS THE VALUE 5208.
; THE CONTENTS OF LOCATION 5208'
; THAT IS, THE BINARY CODE FOR THE
; INSTRUCTION ITSELF, WILL BE DEPOSITED
;IN LOCATION INDEX.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the direct

assignment statement

.=.+100

will reserve 1008 bytes of storage space in the program. The next instruc-

tion will be stored at 1100.

3.6 ADDRESSING

The Program Counter (register 7 of the eight general registers) always con-
tains the address of the next word to be fetched; i.e., the address of the
next instruction to be executed, or the second or third word of the current

instruction.
3-11

In order to understand how the address modes operate and how they as-

semble (see Section 3.6.11), the action of the Program Counter must be

understood.

Whenever the processor implicitly uses the Program Counter (PC)

The key rule is:

to fetch a word from memory, the Program Counter is automatically

incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two,

so that it is pointing to the next word in memory; and, if an instruction
uses indexing (see Sections 3.6.7, 3.6.8, and 3.6.10), the processor uses

the Program Counter to fetch the base from memory.

above, the PC increments by two, and now points to the next word.

The following conventions are used in this section:

b.

The addressing specification, A, may now be explained in terms of E,

R, and ER as defined above.

Let E be any expression as defined in Section 3.4.

Let R be a register expression. This is any expres-
sion containing a term preceded by a % character or
a symbol previously equated to such a term.

Examples:
RO = %0 ; GENERAL REGISTER O
Rl = RO + 1 ; GENERAL REGISTER 1
R2 =1 + %1 ; GENERAL REGISTER 2

Let ER be a register expression or an expression in
the range 0 to 7 inclusive.

Let A be a general address specification which pro-
duces a 6-bit address field as described in the
PDP-11 Handbook.

and instruction CLR or double operand instruction MOV.

3.6.1 Register Mode

The register contains the operand.

Format:

Hence, using the rule

L 4

Each will be illustrated with the single oper-

TN

TN

Example:

RO = %0 ;DEFINE RO AS REGISTER 0
CLR RO ;CLEAR REGISTER O

3.6.2 Deferred Register Mode

The register contains the address of the operand.

Format: @R or (ER)
Example:
CLR @R1 ;CLEAR THE WORD AT THE
or ;ADDRESS CONTAINED IN
CLR (1) ; REGISTER 1.

3.6.3 Autoincrement Mode

The contents of the register are incremented immediately after being used

as the address of the operand.l
Format: (ER) +

Examples:

CLR (RO)+ ; CLEAR WORDS AT ADDRESSES
CLR (RO+3)+ ;CONTAINED IN REGISTERS 0, 3, AND 2 AND
CLR (2)+ ; INCREMENT REGISTER CONTENTS

;BY TWO.

1
a. Both JMP and JSR instructions using mode 2 (non-deferred Autoincre-
ment Mode) autoincrement the register before its use.

b. In double operand instructions of the addressing form %R, (R)+ or
%R,-(R) where the source and destination registers are the same, the
source operand is evaluated as the autoincremented or autodecremented

" value; but the destination register, at the time it is used, still con-

tains the originally intended effective address.
For example, if Register 0 contains 100, the following occurs:

MOV R, (@)+ ;THE QUANTITY 102 IS MOVED TO LOCATION 100
MOV R@,-(2) ;THE QUANTITY 76 IS MOVED TO LOCATION 76

The use of these forms should be avoided, as they are not guaranteed
'to remain in future PDP-11l's.

3.6.4 Deferred Autoincrement Mode

The register contains the pointer to the address of the operand. The con-
tents of the register are incremented after being used.

Format: Q@ (ER)+

Example:

CLR @(3)+ ;CONTENTS OF REGISTER 3 POINT
;TO ADDRESS OF WORD TO BE CLEARED
;BEFORE BEING INCREMENTED BY TWO

3.6.5 Autodecrement Mode

The contents of the register are decremented before being used as the ad-

dress of the dperand.l

Format: - (ER)

Examples:
CLR - (RO) ;DECREMENT CONTENTS OF REG-
CLR - (R0+3) ;ISTERS 0, 3, AND 2 BEFORE USING
CLR -(2) ;AS ADDRESSES OF WORDS TO BE CLEARED

3.6.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as the

pointer to the address of the operand.

Format: @- (ER)

1 _ .
See previous footnote.

AN

Example:

CLR @-(2) ;DECREMENT CONTENTS OF REG. 2
;BEFORE USING AS POINTER TO ADDRESS

;OF WORD TO BE CLEARED

3.6.7 Index Mode

Format: E (ER)

The value of an expression E is stored as the second or third word of the

instruction. The effective address is calculated as the value of E plus

the contents of register ER. The value E is called the base.

Examples:

CLR X+2(R1) ;EFFECTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1

CLR =-2(3) ;EFFECTIVE ADDRESS IS -2 PLUS
;THE CONTENTS OF REGISTER 3

3.6.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the ad-

dress of the operand.

Format: @E (ER)
Example: .
CLR @14 (4) ; IF REGISTER 4 HOLDS 100, AND LOCA-
;TION 114 HOLDS 2000, LOC. 2000 IS
;CLEARED

3.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself to be stored as the second or

third word of the instruction. It is assembled as an autoincrement of

register 7, the PC.

Format: #E

Examples:
MOV #100, RO ;MOVE AN OCTAL 100 TO REGISTER 0
MOV #X, RO ;MOVE THE VALUE OF SYMBOL X TO

; REGISTER 0

3-15

The operation of this mode is explained as follows:
The statement MOV #100,R3 assembles as two words. These are:

g1274¢3
g901p0

Just before this instruction is fetched and executed, the PC points
to the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27 (auto-
increment the PC). Thus, the PC is used as a pointer to fetch the oper-
and (the second word of the instruction) before being incremented by two,
to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

3.6.10 Relative and Deferred Relative Modes

Relative Mode is the normal mode for memory references.

Format: E
Examples:
CLR 100 ;CLEAR LOCATION 100
MOV X,Y ;MOVE CONTENTS OF LOCATION X TO

; LOCATION Y

This mode is assembled as Index Mode, using 7, the PC, as the register.

The base of the address calculation, which is stored in the second or third
word of the instruction, is not the address of the operand. Rather, it is

the number which, when added to the PC, becomes the address of the operand.
Thus, the base is X - PC. The operation is explained as follows.

If the statement MOV 100,R3 is assembled at location 20, then the as-

sembled code is:

Location 20: g 16 74 3

Location 22: geg0s 4

The processor fetches the MOV instruction and adds two to the PC so that
3-16

it points to location 22. The source operand mode is 67; that is, indexed
by the PC. To pick up the base, the processor fetches the word pointed to
by the PC and adds two to the PC. The PC now points to location 24. To
calculate the address of the source operand, the base is added to the desig-
nated register. That is, Base + PC = 54 + 24 = 100, the operand address.

Since the Assembler considers . as the address of the first word of the
instruction, an equivalent statement would be

MoV 100 ~-- 4(PC),R3

This mode is called relative because the operand address is calculated rela-
tive to the current PC. The base is the distance (in bytes) between the
opérand and the current PC. If the operator and its operand are moved in
memory so that the distance between the operator and data remains constant,
the instruction will operate correctly.

If E is preceded by @, the expression's value is the pointer to the
address of the operand.

3.6.11 Table of Mode Forms and Codes (6-bit (A) format only - see Sec-
tion 3.7)

Each instruction takes at least one word. Operands of the first six forms
listed below do not increase the length of an instruction. Each operand
in one of the other forms however, increases the instruction length

by one word.

Form Mode Meaning
R on Register
None of these @R or (ER) 1n Register n deferred
forms increase (ER) + 2n Autoincrement
the instruction @ (ER)+ 3n Autoincrement deferred
length. - (ER) 4n Autodecrement
@- (ER) 5n Autodecrement deferred
E (ER) 6n Index
Any of these @E (ER) 7n Index deferred
forms adds a #E 27 Immediate
word to the Q#E 37 Absolute memory
instruction _ reference
length E 67 Relative
QE 77 Relative deferred
reference

3-17

1. An alternate form for @R is (ER). However, the form @(ER)
is equivalent to @O0 (ER).

2. The form Q#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @#100 will
clear location 100 even if the instruction is moved from
the point at which it was assembled.

3.7 INSTRUCTION FORMS

The instruction mnemonics are given in Appendix B. This section defines
the number and nature of the operand fields for these instructions.

In the table that follows, let R, E, and ER represent expressions as
defined in Section 3.4, and let A be a 6-bit address specification of the

forms:
E @E
R @R or (R)
(ER) + @ (ER) +
- (ER) @- (ER)
E (ER) @E (ER)
#E @#E
Table 3-1. Instruction Operand Fields
Instruction Form Example
pouble Operand Op A,A MOV (R6)+,QY
Single Operand Op A CLR - (R2)
perate Op HALT
ranch ; Op E BR X+2
BLO .-4
- < (Ewm o < -
where =128, <(E 2)/22127,
Subroutine Call JSR ER,A JSR PC,SUBR
Subroutine Return 'RTS ER RTS PC
EMT /TRAP Op or EMT
Op E EMT 31
where 0ZEZ377,

3-18

~

—
-
K ™~

Ve ~

The branch instructions are one word instructions. The high byte con-
tains the op code and the low byte contains an 8-bit signed offset (7 bits
plus sign) which specifies the branch address relative to the PC. The

hardware calculates the branch address as follows:

a) Extend the sign of the offset through bits 8-15.

b) Multiply the result by 2. This creates a word offset
rather than a byte offset.

c) Add the result to the PC to form the final branch ad-
dress.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to the
PC, the PC is pointing to the word following the branch instruction; hence

the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.
Since PC = .+2, we have

Byte offset = (E---2)/2 truncated to eight bits.

The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers in
the low-order byte. If EMT or TRAP is followed by an expression, the value
is put into the low-order byte of the word. However, if the expression is
too big (>3778) it is truncated to eight bits and a Truncation (T) error

occurs.

3.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the assembly

process and may generate data. They may be preceded by a label and

followed by a comment. The assembler directive occupies the operator
field. Only one directive may be placed in any one statement. One or
more operands may occupy the operand field or it may be void -- allow-

able operands vary from directive to directive.
3.8.1. .EOT

The .EOT directive indicates the physical End-Of-Tape though not the logical

end of the program. If the .EOT is followed by a single line feed or
form feed, the Assembler will still read to the end of the tape, but

3-19

will not process anything past the .EOT directive. If .EOT is followed
by at least two line feeds or form feeds, the Assembler will stop before
the end of the tape. Either case is proper, but it should be understood

that even though it appears as if the Assembler has read too far, it
actually hasn't. (__?

If a .EOT is embedded in a tape, and more information to be as-
sembled follows it, .EOT must be immediately followed by at least two

line feeds or form feeds. Otherwise, the first line following the .EOT
will be lost. -

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as one
program. The last tape is normally terminated by a .END directive (see

Section 3.8.3) but may be terminated with .EOT (see .END emulation in
Section 3.9.4). '(

3.8.2 L.EVEN

The .EVEN directive ensures that the assembly location counter is even by
adding one if it is odd. Any operands following a .EVEN directive will
be ignored.

3.8.3 .END (

The .END directive indicates the logical and physical end of the source
program. The .END directive may be followed by only one operand, an ex-
pression indicating the program's entry point.

At load time, the object tape will be loaded and program execution will
begin at the entry point indicated by the .END directive. If the entry Q

point is not specified, the Loader will halt after reading in the object
tape.

3.8.4 .WORD

The .WORD assembler directive may have one or more operands, separated by
commas. Each operand is stored in a word of the object program. If there
is more than one operand, they are stored in successive words. The oper-

ands may be any legally formed expressions. For example,

.=142¢ (
SAL=§ \y
.WORD 177535, .+4,SAL ;STORED IN WORDS 142@, 1422, AND

:1424 WILL BE 177535, 1426, AND f.

3-20

L~

Values exceeding 16 bits will be truncated from the left, to word
length.

A .WORD directive followed by one or more void operands separated by

commas will store zeros for the void operands. For example,

.=1430 ;ZERO, FIVE, AND ZERO ARE STORED
.WORD ,5, ;IN WORDS 143@, 1432, AND 1434.

An operator field left blank will be interpreted as the .WORD direc-
tive if the operand field contains one or more expressions. The first
term of the first expression in the operand field must not be an instruc-
tion or assembler directive unless preceded by a +, -, or one of the logi-
cal operators ! or &. For example,

=444 ; THE OP-CODE FOR MOV, WHICH IS @g1g9gg,
LABEL: +MOV,LABEL ;IS STORED IN LOCATION 44@. 44§ IS
;STORED IN LOCATION 442.

Note that the default .WORD will occur whenever there is a leading
arithmetic or logical operator, or whenever a leading symbol is encountered
which is not recognized as an instruction mnemonic or assembler directive.

Therefore, if an instruction mnemonic or assembler directive is misspelled,

the .WORD directive is assumed and errors will result. Assume that MOV is

spelled incorrectly as MOR:
MOR A,B

Two error codes can result: a Q will occur because an expression operator
is missing between MOR and A, and a U will occur if MOR is undefined. Two
words will be generated; one for MOR A and one for B.

3.8.5 L.BYTE

The .BYTE assembler directive may have one or more operands separated by
commas. Each operand is stored in a byte of the object program. If multiple
operands are specified, they are stored in successive bytes. The operands
may be any legally formed expression with a result of 8 bits or less. For
example,

SAM=5 ; STORED IN LOCATION 41§ WILL BE
.=41g ;969 (THE OCTAL EQUIVALENT OF 48).
.BYTE 48.,SAM ;IN 411 WILL BE @@5.

3-21

If the expression has a result of more than 8 bits, it will be trun-
cated to its low-order 8 bits and will be flagged as a T error. If an
operand after the .BYTE directive is left void, it will be interpreted as

zero. For example, P

.=420 ; ZERO WILL BE STORED IN
.BYTE , , ;BYTES 428, 421 AND 422.

3.8.6 .ASCII

The .ASCII directive translates strings of ASCII characters into their 7-

bit ASCII codes with the exception of null, rubout, carriage return, line

feed, and form feed. The text to be translated is delimited by a charac- -
ter at the beginning and the end of the text. The delimiting character may

be any printing ASCII character except colon and equal sign and those used

in the text string. The 7-bit ASCII code generated for each character will

be stored in successive bytes of the object program. For example, (
=500 ;THE‘ASCII CODE FOR "Y" WILL BE
JASCII /YES/ ;STORED IN 5@g@, THE CODE FOR "E"
;IN 501, THE CODE FOR "S" IN 5@2.
.ASCII /5+3/2/ ; THE DELIMITING CHARACTER OCCURS
;AMONG THE OPERANDS. THE ASCII
;CODES FOR "5", "+", AND "3" ARE (
; STORED IN BYTES 583, 5@¢4, AND

;545. 2/ IS NOT ASSEMBLED.

The .ASCII directive must be terminated by a space or a tab.

3.9 OPERATING PROCEDURES

3.9.1 Introduction (

The Assembler enables you to assemble an ASCII tape containing PAL-11A
statements into an absolute binary tape. To do this, two or three
passes are necessary. On the first pass the Assembler creates a table
of user-defined symbols and their associated values, and a list of
undefined symbols is printed on the teleprinter. On the second pass the
Assembler assembles the program and punches out an absolute binary tape
and/or outputs an assembly listing. During the third pass (this pass is
optional) the Assembler punches an absolﬁte binary tape or outputs an

| assembly listing. The symbol table (and/or a list of errors) may be out-
put on any of these passes. The input and output devices as well as
various options are specified during the initial dialogue (see Section 3.9.3).(
The Assembler initiates the dialogue immediately after being loaded and
after the last pass of an assembly.

3-22

3.9.2 Loading PAL-11A

PAL-11A is loaded by the Absolute Loader (see Chapter 6 for operating
procedures). Note that the start address of the Absolute Loader must be
in the Switch Register when loading the Assembler. This is because the

Assembler tape has an initial portion which clears all of core up to the

address specified in the Switch Register, and jumps to that address to
start loading the Assembler.

3.9.3 Initial Dialogue

After being loaded, the Assembler initiates dialogue by printing on the
teleprinter:

*S

meaning "What is the Source symbolic input device?" The response may
be:

H meaning High-speed reader
L m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>