=
TN

EK-1VAXD-TM-003

VAX Diagnostic
Design Guide

Prepared bv Educational Services
of
Digital Equipment Corporciion

First Edition August 1979
Second Edition, March 1981
Third Edition, November 1983

Copyright ® 1983 by Digital Equipment Corporation
All Rights Reserved

The reproduction of this material, in part or whole, is strictly prohibited.
For copy information, contact the Educational Services Department,
Digital Equipment Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may not be used or copied except in accordance with the terms of
such license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by Digital.

The manuscript for this book was created using DIGITAL Standard
Runoff. Book production was done by Educational Services
Development and Publishing in Nashua, NH.

The following are trademarks of Digital Equipment Corporation:

Eﬂ@ﬂﬂﬂﬂ DECtape Rainbow

DATATRIEVE DECUS RSTS

DEC DECwriter RSX

DECmate DIBOL UNIBUS
DECnet MASSBUS VAX

DECset PDP VMS
DECsystem-10 . P/OS VT
DECSYSTEM-20 Professional Work Processor

SN

[

7N

TN

CONTENTS

CHAPTER 1 WHAT IS A DIAGNOSTIC PROGRAM?

INTRODUCTION. . & ¢ ¢ ¢ o o ¢ o o o o o o o o o @
USES OF DIAGNOSTIC PROGRAMS . .+ ¢ ¢ o« o o o o o =
DIAGNOSTIC PROGRAM USERS. . « ¢ ¢ o o« « o + o o &
USER REQUIREMENTS . . ¢ ¢ ¢ ¢ o ¢ o o o o o o o« =
RUN-TIME ENVIRONMENTS . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o« o « .
DEFINITIONS . . ¢ ¢ o ¢ o ¢ ¢ o o o o o o o o o
TESTING GOALS ¢ + v ¢ ¢ ¢ ¢ ¢ o o o o o o o o o
LOGIC TESTS, FUNCTION TESTS, AND EXERCISERS . . .
SERIAL AND PARALLEL TESTING ¢ ¢« « +« « o .
BOTTOM~-UP AND TOP-DOWN TESTING.« +« « « .+ .
MACROPROGRAMS AND MICROPROGRAMS

o
o o
LI

i
NHF_ROUJOOULND NN

L]
. . .
[e e e e S]
I I

HHOOJOU & WN -

H

e e el el el el
. L] L]

= e
I
=

CHAPTER 2 VAX DIAGNOSTIC PROGRAMS

INTRODUCTION. v &« o o o o e o o o o o o o o o o o
RUN-TIME ENVIRONMENTS FOR VAX DIAGNOSTIC PROGRAMS.
The VAX Diagnostic Supervisor .« . ¢ ¢« o« & o o« o« @
INTRODUCTION TO THE VAX DIAGNOSTIC STRATEGY
METHODS OF PERFORMING I/0 . +v & ¢« - o o« o o o o o o2-
APPLYING THE VAX DIAGNOSTIC STRATEGY. . « « « « o 2-1
Testing the CPU Cluster . « ¢« ¢ ¢ « ¢« ¢« o« &« o .« 2-1
Testing Peripheral Devices. . « ¢« ¢« ¢« « « « o o« 2-11
GUIDELINES FOR WRITING VAX DIAGNOSTIC PROGRAMS. . 2-12
Level 1 GuidelineS. . ¢ o o« o o o o o o o o o o« 2=12
Level 2R Guidelines . . v ¢ o ¢ ¢ ¢ ¢ o« o« o« « o« 2-13
Level- 2 Guideline . . « v ¢ & ¢ o o « o o« o« « o 2-13
Level 3 Function Tests Guidelines 2-13
Level 3 Logic Test Guidelines 2-14
Level 4 Guidelines. . . + &« ¢« ¢ o o« &« « « « o« « 2-15
Level 5 GuidelineS. « « « « ¢ « o« o o« o« o« « « o« 2-16

.
=

e o e
o o
[N

.

Ao oo oo UTuUTUT s WD

. .
N oUW

NNNDNDNNONDNNMDDNDNNNNNMDNDNNDNDDN

CHAPTER 3 THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.1 INTRODUCTION. ¢ & & o o o o o o o o o o o o o o « 3-1
3.1.1 Overview of the VAX Diagnostic Supervisor3-2
3.1.2 Overview of a VDS Diagnostic Program3-2
3.1.3 Memory Layout . ¢ ¢ o ¢ ¢ o ¢ & o o « o« o« « o« « o3-4
3.1.4 Introduction to the Macros. . . .« ¢« « « « « « « .3-5
3.2 P-TABLES. . ¢ ¢ ¢ ¢ o o o o o o « o o o o« o o o o« +3-6
3.2.1 Introduction to P-Tables. « « « v + « o o « « .« .3-6
3.2.2 P-Table Format. . « « & & « ¢ o o « « o o o« « «» 3-8
3.2.3 P-Table Descriptors . . o ¢ « o o o o « o« o« « o 3-11
3.2.3.1 Introduction to P-Table Descriptors 3-11

iii

L]
LYWW OLO~JoOULTuUTULTULTUTUIdE WWWWWNhDNDNDDNDDND

. e o o s o e e &
e o o « o o o .
&Sw N+ U www

WWWWWwWwWwWwWwWwWwWwwwWwuwwwwwuwwww ww
e o o o e o o e o .
. e o o °

N = w N+ s wh -

WWWWWLWWWWWWWWWWWWWWWWWWwWw Www
.
I e e el el e e e el R R R - R - -

BLWWWwWwWhNDNDNDNDNDNDMDHEFa YR
.

. L)
wWWwWwwwww

o« o e « o
*« o o o
o wNh -

o e e o e o
o e « o o
NNMNNNDHBE -

o o

e o e .

Ul N -

wN -

W N

[N]

w N

Location of P-Table Descriptors .
Creating P-Table Descriptors.

Creating Names for Device-Dependent Fields.
Referencing P-Tables from a Diagnostic Program
Attaching from Within the Diagnostic Program.

DIAGNOSTIC PROGRAM GLOBAL DATA STRUCTURES

Diagnostic Program Header .
Dispatch Table.
Program Sections Table. . .
Device Mnemonics List . . .
PROGRAM PASSES AND SUBPASSES.
INITIALIZATION CODE

Format of the Initialization Code .
Services Used by the Initialization

Logical Units

Program Passes and the In1t1allzat10n

Initialization Code Examples
CLEANUP CODE. . + ¢« ¢« « « +
SUMMARY ROUTINE « ¢« « o« o o
TESTS, SUBTESTS, AND SECTIONS

Tests. . . « . . . c s o

Subtests. o .

Sections. . . « .« . < .+ . .
REPORTING ERRORS.« .« .

Error Message Formats . .

VDS Control Flags Associated

with Error Reporting. . . .

Error Types . . « ¢« « « « .

Preparation Errors. . . .
Soft Errors
Hard Errors . . « .« +« o .
Device-Fatal Errors . . .
System-Fatal Errors . . .
LOOPING . &+ ¢ & o o o o o o =

Defining Loop Boundaries. .

Characteristics of Loops. .

Nesting LOOPS « « « o & o &

User-Specified Looping. . .
CONDITIONAL AND UNCONDITIONAL
INPUT/OUTPUT. « . « o« « o o =«

I/0 with the Unit Under Test

I/0 in User Mode.
I/0 in Standalone Mode. .
I1/0 with the User Terminal.
Displaying Message Strings
Prompting the User. . . .
Displaying HELP Text. . .

.

.

MEMORY MANAGEMENT AND ALLOCATION.
Memory Management in User Mode.
Memory Management in Standalone

Memory Allocation

Mode

3 3

SYNCHRONOUS AND ASYNCHRONOUS EVENTS .

iv

Code.

.

Code.

3-12
3-13
3-19
3-22
3-22
3-22
3-22
3-22
3-23
3-23
3-23
3-24
3-24
3-24
3-25
3-25
3-26
3-27
3-28
3-29
3-29
3-29
3-31
3-32
3-32

3-34
3-35
3-35
3-35
3-35
3-36
3-36
3-36
3-37
3-38
3-39
3-49
3-41
3-43
3-43
3-43
3-48
3-50
3-51
3-52
3-54
3-54
3-54
3-55
3-55
3-56

3.14.4.2

3.14.5
3.14.6
3.15

3.15.1
3.15.2
3.15.3
3.15.4
3.15.5
3.15.6
3.15.7
3.15.8

CHAPTER 4

s & e e s
Noodbdw NN N
e e o
w N+

L S A L i i S
.

CHAPTER 5

e o . e o . . .
e o ¢ o .

.
~Nourdks wN -

e o e @
* .
w N -

ottt u ot utug
BLwwwwdhbdhd DN N

Event Flags . « ¢ ¢ ¢ ¢ o o o o o o o o o o« @
Asynchronous System Traps (ASTS). .« . « « « .
AST DelivVery. o o o o o o o o o o o o o o =
AST Routines. .« ¢ o o« o o o o o o o o « o
Timinge. o o ¢ o o o o o o o o o o o o o o o o
Timing Facilities Available in User Mode
and Standalone Mode . +« +« +« o + o« o s o o
Timing Facilities Available in Standalone
Mode Only .+ « ¢ ¢ o ¢ ¢ o o o o o o o o o o
Condition Handling. . ¢ o « o o « o o o o« o &
Handling Control-=Cs . « o & & o o o « o o o @
FILE MANAGEMENT . ¢ ¢ ¢ o o« o o s o o o o o o @
Introduction. . « ¢ ¢ ¢ o o o o o o o &+ o s
VDS RMS Overview. . .
The FAB, RAB, and XAB . « &« « o« o« « .
Accessing the VDS RMS Control Structures. . .
Reading Files . . o & ¢ &« o« o o o o o o o o =
Record ProcesSSiNg .« « « o o o o o o o o o o =
Block ProcessSing. « o « o « ¢ o o o o« « o o
Mixing Block Processing and Record Processing

VDS MACROS

INTRODUCTION. ¢ ¢ ¢ o o o o o o o o o o o o o «
CODING SYSTEM SERVICE MACRO CALLS « .« &

Fields of the Macro Name. . .« ¢ ¢ « o o o o =

Macro ArgumentsS .« .« o o o o o o o o o o o o

Return Status Codes . ¢ « ¢ ¢ ¢ ¢ o o o o o« =
CONVENTIONS USED IN THIS CHAPTER. . ¢ « « « « o
PROGRAM STRUCTURE MACROS e e o o o e o o o o o
PROGRAM CONTROL MACROS e o o o o e & 8 o e o
SYSTEM SERVICE MACROS . ¢ ¢ ¢ ¢ o o o o o o o o«
SYMBOL DEFINITION MACROS. ¢ ¢ ¢ « o « o o o o =

CREATING A VDS DIAGNOSTIC PROGRAM

INTRODUCTION . . ¢ ¢ o o o o o o o o« o o o o
PROGRAM DEVELOPMENT PROCESS . . ¢ ¢ o« « « o o @
OVEIVIEeW +« v & ¢ o ¢ o o o o o o o o o o o =
Consultation Phase. « ¢« ¢ o ¢ o« o o o« o o o«
Planning PhasS@. . « « « o o o o o o o o o o
Functional Specification Phase.
Design PhasSe. . « v « o« « o o o o o o o o o =
Design Implementation Phase . . . « « « « « .
Design Verification Phase . . . « ¢« ¢ o « o &
PROGRAM STRUCTURE ¢ ¢ & ¢ ¢ o o o o o o o o o« =
Header Module . .+ . ¢ &« o o o o o o o o o o =
Test Modules. . + v ¢ o o o o o o o« o o o o =
Module TemplateS. . « ¢ ¢ & o ¢ « o o o o o =
PROGRAM DOCUMENTATION . &+ v ¢ ¢ o ¢ ¢ o o o o

. 3-56
. 3-58
. 3-58
. 3-58
. 3-59

. 3-61

. 3-61
. 3-65
. 3-66
. 3-66
. 3-68
. 3-68
. 3-69
. 3-70
. 3-70
. 3-73
. 3-73

* L]
L] L] L] ° .
[T T N G G NG G
11

O | I
& oYU N

.
1S)

L]
NN
i
=
o=
> 1

o e
1

.
* o

e e

(SO, R0, R0, 0, RO N0, O, RO, B0, N0, RO RO O |
| I

coooJuUuUUTUuTwwNDNOHE - -

.
.

« o o o
« o o
. .
AU WIN

L]
BB WWwWwwwwN
.

e o e o o e e o e o « o o e
e o o o o o .
N U WwWN
« o
w N -

.
.

SESESESESE S
.
N -
L]
w N

GECRGEGECRGRCRG R G RGEGEGRG R RGO R RO NGRS R RS RGN RS RS R N RS N
.

o R 0 00~~~ ~I~d 1 ~d~J 0 U1 D DD D DD D
.

APPENDIX

APPENDIX

APPENDIX

APPENDIX

Introduction.
Documentation File.
Source Code Documentation . .
Module NameS. « « « « « «
Module Cover Page
Test and Subtest Prefaces .
Subroutine Preface.
Source Code Comments. . . .
Help Files. . . « « & o « o«
Description of Help Files .
Creating Help Files
Contents of Help Files. . .

RUN-TIME ENVIRONMENT CONSIDERATIONS .

CUSTOMER~-RUNNABLE DIAGNOSTICS
CODING CONVENTIONS. .« « ¢« « « =
Error Message Formats
Volume Verification
Long Silences . . .« +« « + . .
Hardware Preparation.
Manual Intervention
Quick Mode. . . « « ¢ « « o .
Naming Symbols.
LINKING A DIAGNOSTIC PROGRAM .
DEBUGGING A DIAGNOSTIC PROGRAM.
QUALITY ASSURANCE . .« « ¢« « « .
Quality Requirements.
Documentation Quality . . .
Functional Quality.
Operational Quality
Automated Quality Assurance .

TEMPLATE FOR THE VDS DIAGNOSTIC

(CRD) . :

PROGRAM

5-8
.5-9
5-12
5-12
5-12
5-12
5-14
5-16
5-19
5-19
5-290
5-23
5-24
5-25
5-25
5-25
5-27
5-28
5-29
5-30
5-31
5-31
5-33
5-34
5-34
5-34
5-35
5-35
5-35
5-40

HEADER MODULE

TEMPLATE FOR VDS DIAGNOSTIC PROGRAM TEST MODULES

TEMPLATE FOR DIAGNOSTIC PROGRAM DOCUMENTATION FILE

SAMPLE HELP FILE

Hardware Environments for VAX Diagnostic

Programs. . . « ¢« ¢« «¢ o o o o

VDS Overview. . .« « « « « o + &
VDS Memory Layout

. . . .

FIGURES

Sample Hardware Configuration and Associated

P-Tables. . « « ¢ ¢ « o« « « o &
P-Table Layout.

vi

. . ° .

o . . L . .3
. 3

/—\\
w W NN N
N - w N -

wWwwwwwuww

OOV WN -

Legal and Illegal Usage of Subtests 3-30
Examples of Loop Boundaries . . . « « « « « « « o 3-38
Proper and Improper Branching Within Loops. . . . 3-39
Nesting LOOPS « o o o « o o o o o o o o o o o« « « 3-40
$SQIO0 Function Code and Modifier Fields. 3-45
I/0 Status Block Format . « « ¢ « o« o« o o o« « « o 3-46
Typical $QIO Diagnostic Buffer Format 3-48
Argument List Passed to an AST Routine. 3-59
Argument List Passed to a Condition Handler . . . 3-63
Format of Signal Array. . . « « « « « o « « « « o« 3-63
Format of Mechanism Array . . « « « « o « o« « « « 3-64

Quadword String Descriptor. . o « « « « o o « o o« o4-=-7
Argument List Format for

$DS BGNDATA - SDS _ENDDATA . . ¢ ¢ ¢ ¢ o o o o o & 4-49
Sample Parse Tree . . « o« « o « o o o « o o« o« « o 4-59
"Valtab" Table Format . « ¢ ¢ ¢« « « o o « o« « o 4-114
Adapter Status Format e e« o+ « o o <4-135
$DS_CVTREG Value Mnemonics Table Usage. e ¢ o« o +4-152
Device Characteristics Buffer (Standalone Mode) .4-177
Format of Terminal Characteristics.4-179

TABLES

Program Levels and Run-Time Environment.2-5
Hardware Environments and Hardcore Requirements. .2-6
I/0 Methods and Program TypeS. . « « « + &« « « o« +2=9
Device-Independent Read and Write Functions. . . 3-35
Comparison of VAX-11] RMS and VDS RMS 3-67
EXAMPLES

P-Table Descriptor for RK61l1 Disk Controller. . . 3-16
P-Table Skeletons for RH780 MASSBUS Adapter . . . 3-17
P-Table Descriptor for RH780 MASSBUS Adapter. . . 3-18
Referencing P-Tables in MACRO-32. «. « . . 3=20
Referencing P-Tables in BLISS-32. « . . 3=21
Sample Error MeSSage. « « « « « o« o o « o« o o« « o« 3=33
Sample Error MeSSage. « « « « o s o « o o« o o o« o« 3=34
Record Processing with RMS. . . . ¢« ¢ ¢ o« « o o« o 3=72

vii

CHAPTER 1
WHAT IS A DIAGNOSTIC PROGRAM?

1.1 INTRODUCTION

This chapter presents an introduction to diagnostic program
design. It discusses the uses and users of diagnostic programs,
the testing goals any diagnostic program design should meet, and
the various methods used to test hardware. This chapter discusses
those characteristics that are common to all diagnostic programs,
regardless of the hardware they are designed to execute in or
test.

1.2 USES OF DIAGNOSTIC PROGRAMS

A diagnostic program 1is any program designed specifically to
discover and 1identify hardware failures in a computer system.
There are three main cases in which diagnostic programs are used.

1. During execution of applications or systems programs, when
the system produces unexpected events or 1incorrect
computation results.

This indicates the possibility of malfunctioning hardware.
A diagnostic program or set of programs will be executed
to determine if there was a hardware malfunction and, if
so, which part of the system failed.

2. During manufacturing.

After a hardware device is built, it must be thoroughly
tested before it is shipped to a customer. This testing
generally is performed "bottom-up." First, 1logic modules
making up the device are tested separately. Then, the
modules are put together to create the whole device and
the device itself is tested. Sometimes entire systems are
put together in the manufacturing plant and tested before
being shipped to a customer. Other times, systems are not
put together until the individual parts (previously tested
processors and peripherals) arrive at the customer site.

WHAT IS A DIAGNOSTIC PROGRAM?

3. During the design of a new product.

If the functionality of a product is accurately defined,
and a diagnostic program for the product is correctly
written, then when the diagnostic program is executed it
should (if the product has no hardware malfunctions)
indicate that the product is functioning correctly. If
the diagnostic program indicates that errors have been
detected, they could be the result of a faulty product
design that needs to be corrected.

1.3 DIAGNOSTIC PROGRAM USERS

Because diagnostic programs are put to various uses, the users
(operators) of these programs are also varied. When a diagnostic
program is used to identify problems in a system at a customer
site, the program may be run by a customer service representative
or by the customer.

Diagnostic programs used to verify proper functioning of new
devices or systems might be run by technicians at the
manufacturing site. They might be 1loaded and run wusing an
automated method requiring no operator. Also, customer service
representatives must verify proper functioning of new systems when
the systems arrive at a customer site.

A diagnostic program used for design verification would probably
be run by a hardware design engineer.

Because of the variety of users for diagnostic programs, the
program developer should be aware who the users of his or her
program will be. Some programs may be intended for a specific
audience, and the program can be tailored to 1its needs,
background, and experience. Other programs will be intended for a
wide range of wusers and must be written to be useful to all of
them.

l.4 USER REQUIREMENTS

All diagnostic program users have specific requirements that the

programs must meet. While some requirements are common to more
than one user, some are not.

All users have in common the need for good fault detection, or
"coverage" (the ability to find as many failures as possible).
Every user expects that if an error exists on the device being
tested, then some diagnostic program will detect that error.

Customers, or "end users," have three main requirements for
diagnostic programs.

WHAT IS A DIAGNOSTIC PROGRAM?

Ease of use.

The functions of diagnostic programs are technical and
relate to internal system hardware. An end user may not
have the training to understand what operations are taking
place in the diagnostic program. Therefore, the human
interface must be simple. For example, installing cables,
setting switches on logic boards, requesting information
such as CSR addresses or device priority 1levels are all

inappropriate.
Preservation of user data.

Since device media may contain data needed by the user,
diagnostic programs must provide safeguards against
destruction of this data. This is generally accomplished
by only writing on media designated for diagnostic use.
Some disks provide specific sectors that are used only for
diagnostic purposes.

Nonexclusion of users.

A large system at a customer site will usually be
timeshared by many users. If the users cannot use the
system while diagnostic programs are running, significant
loss to the customer can occur. Therefore, diagnostic
programs should operate under the user's operating system
and not preempt other system users.

Customer service representatives' have the following diagnostic
program requirements.

Quick fault detection.

The faster a customer service representative arrives at a
site, fixes the problem, and 1leaves, the happier the
customer. Diagnostic programs should ‘be able to find
faults as quickly as possible.

Identification of bad field-replacable units.
The diagnostic program should be able to tell the customer

service representative which FRU (see definition in
Section 1.6) should be replaced.

WHAT IS A DIAGNOSTIC PROGRAM?

e Good program documentation.

To identify a failure, it 1is often necessary for the
customer service representative to understand what
functions a diagnostic program is performing. Therefore,
the program should be well documented with detailed
functional descriptions of each test.

Manufacturing requirements depend on which phase of the
manufacturing process a diagnostic program is used in.

In the module test phase, quick error detection 1is wvalued,
particularly in high volume settings. Good error identification
is sometimes NOT necessary, because modules are sent to module
repair stations that use their own special-purpose hardware and
software to identify module failures. In other cases, module
repair stations are not wused and good error identification IS
important.

During device testing, manufacturing technicians have the same
requirements as customer service representatives. Quick detection
is needed so the manufacturing process will not be slowed.
Identification of an weasily replaced constituent part of the
hardware system is necessary so the part can be replaced and the
device shipped while the bad part is repaired, instead of holding
up shipment of the device. Good documentation is necessary
because determining the bad part sometimes requires a thorough
understanding of the diagnostic program's functionality.

The main requirement of design engineers is that the program give
good fault detection. Since the engineer is using the diagnostic

program to check out his or her design, any section of the 1logic
that the program does not test could contain a design flaw that

may not be caught until after the hardware 1is in production,
necessitating an engineering change order (ECO).

It is important to note that user requirements often vary from

product to product. A particular wuser's specific needs often
depend on the type of product for which the diagnostic program is
being designed, or the ©program's use. For example, program

requirements specified by manufacturing personnel will depend on
the manufacturing site's testing stategy for the product. This
strategy is often not the same from one product to the next. The
program developer must maintain close communication with the
program's eventual users in order to tailor the ©program to the
requirements of those users.

WHAT IS A DIAGNOSTIC PROGRAM?

1.5 RUN-TIME ENVIRONMENTS

The variety of uses and users of diagnostic ~programs creates a

variety of "run-time environments" in which diagnostic programs
must be able to execute. A "run-time environment"” is the
control-level software, if any, under which the diagnostic program
must run. Some diagnostic programs cannot function in all

run—-time environments. The environments a program is designed to
run in are determined by the purpose the program is to serve.

In the "user mode" run-time environment, a timesharing operating
system 1is executing on the system tested. There could be many

users on the system at the time a diagnostic program is run, and
the diagnostic program is just another user of the system. The

diagnostic program should not affect any other user on the system.
(The operating system will prohibit the diagnostic program from
exceeding its bounds.) Often, the device tested 1is assigned
exclusively to the diagnostic program, and the device's storage
medium must be replaced with a "scratch" medium the diagnostic
program can use to Wwrite test patterns. Some storage devices
provide an area for the exclusive use of diagnostic programs, such
as the "maintenance cylinders" on some disk media. In such cases,
the diagostic program uses this reserved area and other users of
the device are unaffected.

The opposite of the user mode run-time environment is the
"standalone mode" environment. In standalone mode, the diagnostic
program has exclusive use of the computer system. There is no
high-level operating system to allow other users to run at the
same time or to place execution boundaries on the diagnostic
program. Thus the diagnostic program <can run in privileged
execution modes and wuse reserved registers and memory space.
Sometimes in standalone mode a monitor or other type of control
program provides services to and <controls execution of the
diagnostic program. However, this type of monitor will not place
execution constraints on the diagnostic program.

The advantage of standalone mode over user mode is that the 1lack
of execution boundaries sometimes offers a greater level of
resolution in error identification. The disadvantage is that the
computer's operating system must be brought down, costing the
customer time and money. This disadvantage does not exist when
these programs are used on new systems at the manufacturing site.

The description of user and standalone modes has implied that the
computer system under test is not connected to another system via
any type of network wused for system diagnosis. There are,
however, networks that are wused to 1load and run diagnostic
programs, increasing the number of run-time environments to be
contended with.

WHAT IS A DIAGNOSTIC PROGRAM?

Networks are commonly used at manufacturing sites, where it |1is
necessary to test a large number of systems at once. Typically, a
host processor will maintain up-to-date copies of all diagnostic
programs. The system to be tested will be connected to the host,
and the host will transmit the appropriate programs to the test
system. The programs will be executed 1in the test system's

processor, but the host will monitor the performance of the
programs and note any errors that occur.

Networks can also be used to diagnose systems at customer sites.
In this case, a centrally located host system can use phone lines
to "call" a customer's system. The host can then monitor
diagnostic programs executed on the system tested and provide
customer service representatives with the results of the tests.
This can greatly decrease the amount of time customer service
personnel must spend at the customer's site. Since they will not
go to the customer site until after the tests are executed, they
will have a good idea of what the problem is before they arrive.

1.6 DEFINITIONS
The following are some commonly used terms.

e System under test (SUT) - The hardware system on which a
diagnostic program is executed.

e Unit under test (UUT) - The device tested (part of the
SuT) . The UUT is defined by the diagnostic program, and
can be one drive of a particular device type or an entire
subsystem of the SUT, such as one of the remote nodes of a
host system.

e Hardcore - The portion of the SUT's hardware that must
operate properly for the diagnostic program to execute.
Programs that test peripheral devices typically have a
hardcore consisting of the processor, main memory, and a
program load device. A program's hardcore should never
include any portion of the UUT.

e Field-replacable unit (FRU) - Any portion of the UUT that
can be easily and quickly replaced at a customer's site
(for example, a logic board).

/ N

TN

WHAT IS A DIAGNOSTIC PROGRAM?

1.7 TESTING GOALS

All diagnostic programs have the same testing goals, regardless of
what they test and what their execution environments or main users
are. The first goal is to

e Clearly define the testing scope and required hardcore.

The "testing scope" is that portion of the hardware 1logic which
the program tests. It should never extend beyond the boundaries of
the unit under test. For example, consider a disk controller that
can support several drives. A diagnostic program to test the
controller should not detect faults on the drives, unless it
cannot be avoided. Signals generated in the logic should be
limited to those areas meant to be tested by the diagnostic
program. (The fewer stray signals there are in the system, the
easier it will be to identify the failure.)

The hardcore required by the diagnostic program should be as small
as possible. Testing almost any peripheral device requires some
correctly functioning logic that signals must pass through in
order to get to and from the UUT. The smaller this hardcore, the
more likely that a diagnosis of the UUT can be made without
finding other errors within the the system but outside the scope
of test, which could invalidate the diagnosis. For example, a
program designer writing a diagnostic program for a disk might
have the option of having memory management on or off while the
program is running. Having memory management on will increase the
hardcore for the diagnostic program, and the program will not be
able to test the disk if there are errors in the memory management
logic.

The next goal of a diagnostic program is to

e Detect any and all failures that could occur within the
“testing scope.

If any part of the wunit under test could malfunction, the
diagnostic program should be able to detect that malfunction. The
diagnostic program does NOT need to be concerned with problems
outside the scope of the wunit it 1is 1intended to test. For
example, a diagnostic to test a disk driver should not be expected

to detect CPU problems (although it might detect them
inadvertently).

WHAT IS A DIAGNOSTIC PROGRAM?

This goal is clear-cut and simple -- 1if a malfunction occurs
anywhere within the unit under test, the diagnostic program should
detect and report it. Thus a diagnostic program designed to test
a set of tape drive controllers and their attached drives should
be able to detect any failure occurring in either the controllers
or their associated drives. A system exerciser (designed to
validate the overall functionality of a computer system, including
the CPU, memory, and all peripheral devices) should be able to
detect errors on any device attached to the system.

Once a failure has been detected, the diagnostic progam must

® Attempt to identify which part of the unit under test
caused the malfunction.

It is not enough to recognize that an error has occurred. The
diagnostic program should also be able to indicate which part (or
parts) need(s) to be repaired or replaced.

This third goal is not as <clear-cut as the 1last one, for it
involves the concept of "degree of resolution." When attempting to
identify a failing part, the diagnostic ©program designer must
decide what the smallest part within the system is that should be
considered. Each computer system is made up of hardware devices,
which contain one or several logic boards, which in turn are made
up of IC chips. A diagnostic program's degree of resolution is a
relative measure of its ability to identify the smallest possible
failing constituent part. For example, consider a tape subsystem
consisting of several tape drives connected to one controller. A
diagnostic program that could identify the failing 1logic board
within the failing tape drive would have a higher degree of
resolution than one that only 1identified the failing drive.
("Fault 1isolation" is another phrase often used to refer to the
degree of error resolution.)

A particular program's proper degree of resolution depends on its
intended function. For example, it would be impractical for a
system exerciser (described in Section 1.8) to attempt to identify
failures to the degree of the failing chip. More likely, it would
determine which peripheral device was malfunctioning and, 1if the
peripheral consisted of several drives attached to one controller,
which drive was in error. On the other hand, a diagnostic program
designed to test a specific peripheral device probably should
attempt to identify the failing logic board within that device.

A diagnostic program's degree of resolution can also be affected
by the program's user requirements. It is not always practical to
achieve the highest ©possible degree of resolution, because
increasing resolution <can also cause increased program size and
run-time, and may require a more highly skilled operator. In some
cases it may be more important to keep these variables within
bounds than to attain a high degree of resolution.

1-8

WHAT IS A DIAGNOSTIC PROGRAM?

Unfortunately, achieving a high degree of error resolution Iis
sometimes more an ideal than an attainable goal. Diagnostic
programs used by customer service representatives should ideally

be able to identify the smallest malfunctioning FRU. ' But for the
program to identify an error as existing on one particular FRU,

two requirements must be met. First, all the hardware logic used
to execute the function that failed must reside on a single FRU.
Second, the diagnostic program must be able to determine which FRU
the logic resides on. Both these requirements can only be met
through proper hardware design of the device. Close communication
between the hardware designer and the diagnostic program designer
are essential when a new product is in development, to guarantee
proper logic partitioning along with wvisibility of all signals
needed by the program to achieve high error resolution.

It is sometimes not possible for a diagnostic program to
accurately 1identify a failure to the degree of resolution desired
in a particular situation. In these cases a technician will have
to determine the failing component by examining electrical signals
on logic boards with an oscilloscope. The responsibility of the
diagnostic program then is to provide the technician with aids to
locate the failure quickly and accurately. These aids mainly
consist of program loops that can be invoked if an error is
detected, and whose purpose 1is to provide repetitive state
transitions on small subsets of the hardware logic so that the
techinician can easily observe these transitions and make sure
they are taking place properly.

Thus we have one final design goal for diagnostic programs that
cannot isolate all faults automatically (at the present time, this

includes ALL diagnostic programs). The goal is
e To provide enough useful program loops that all possible
errors can be quickly and easily detected by observing
logic state transitions.
This goal is more relevant to logic tests than to function tests,
both of which are discussed next.

1.8 LOGIC TESTS, FUNCTION TESTS, AND EXERCISERS

Not all diagnostic programs have the same functional goals. In
general, diagnostic programs can be divided into three groups:
"logic tests," "function tests," and "exercisers."

WHAT IS A DIAGNOSTIC PROGRAM?

A logic test is usually wused during the repair of a failing
device. A 1logic test tests the device's combinational logic
(verifies that a specific section of hardware 1logic within the
device is functioning correctly). A logic test should provide the
greatest degree of error resolution of the three types of tests.
Logic tests are designed to run in a standalone environment.

A function test verifies the functionality of a device. For
example, a function test for a disk drive would be used to verify
that the "functions" provided by the disk, such as reading and
writing blocks of data, are operating properly. Function tests
may be used in the repair of failing devices or to detect the
failure. These tests may not have as great a degree of error
resolution as logic tests. Function tests can be designed to run
in either a standalone or user mode environment.

For many products, both a logic test and a function test are
developed. The function test is wused to detect the hardware
failure and the logic test to repair the failing part. For some
products, the function test 1is used for repair. Some products
have logic tests in microprograms (see Section 1.11). In short,
the types of programs developed vary from product to product.
Program users will specify the types of programs they desire for a
particular product.

A third type of diagnostic program is an exerciser. Its purpose
is to verify that a system's functionality can be sustained over a
period of time. Exercisers are more likely to be designed for use
on entire systems than on a single device. Typically, an
exerciser will simultaneously perform repeated functional testing
of every device composing the system, in an attempt to detect (1)
failures that result from this simultaneous wuse of numerous
devices, or (2) failures that only occur rarely.

1.9 SERIAL AND PARALLEL TESTING

Many diagnostic programs are designed to test all units of a
specific type of device existing on a given system. There are two
methods by which this testing of multiple units can be
accomplished, "serial testing" and "parallel testing." Serial
testing involves testing each unit of the device individually, one
at a time. Parallel testing is the testing of all units at once.
Serial testing is more likely to be found in a logic test, where
it 1is desirable to keep the overall level of system activity to a
minimum. Parallel testing, on the other hand, may be included in
function tests to achieve higher levels of system activity.

WHAT IS A DIAGNOSTIC PROGRAM?

1.1 BOTTOM-UP AND TOP-DOWN TESTING

Two testing techniques are used to test hardware systems. They
are generally used in combination to produce a thorough test of
the SUT.

"Bottom-up testing" involves testing a device or system by
considering the UUT to be made up of a set of layers. The lowest
layer is the simplest and most elementary. Successively higher

layers depend on proper functioning of the layers underneath. All
layers taken together make up the entire UUT. Layers are tested
from lowest to highest. Once a layer is tested it is considered
the hardcore for the next layer. This testing technique is Dbased
on a "guilty wuntil proven innocent" assumption. That is, a
section of hardware is not assumed to be functioning properly
("innocent" of causing errors) until its integrity is verified.

Bottom-up testing is a important in logic tests, where the 1logic
must be tested in an order such that whenever a certain section of
logic is being examined, all the 1logic that electrical signals
must pass through before reaching the logic being tested should
have itself been tested previously. Each section of logic is
looike upon as another layer that depends on the previous sections
or layers operating properly. Function tests also make wuse of
bottom-up testing.

The bottom-up technique provides a thorough, systematic,
step-by-step approach to hardware testing. However, using this
method to validate an entire system can take a long time.

"Top-down testing" consists of first 1looking at the UUT as a
whole, then gradually subdividing the UUT into its component parts
until the failing part can be identified. This technique uses an
assumption of "innocent until proven guilty." (The program assumes

everything is operating properly unless errors are detected.) The
problem with this approach is that a fault might exist in a
portion of the hardware outside the testing scope of the

diagnostic program. In this case the diagnostic program might not
detect or might incorrectly diagnose the error, or might not be
able to execute at all.

In practice, diagnosis of a hardware system suspected of
containing faults wuses a combination of top-down and bottom-up
techniques. Often, bottom-up programs will be run in a top-down
manner. Programs written to use the bottom-up technique are run
in an order such that those that test the largest subsystems are
executed first, followed by those that test devices tht previously
executed programs point to as questionable.

WHAT IS A DIAGNOSTIC PROGRAM?

1.11 MACROPROGRAMS AND MICROPROGRAMS

Many computer processors built today have two types of programming
instructions. "Macro-instructions" make up the processor's
machine language. These instructions are the "moves," "branches,"
arithmetic and boolean operators, and so on, that are used to
manipulate data in specific memory locations. Programs that use
these instructions, either directly through the use of an assembly
language or indirectly by using a high-level 1language compiled
down to an assembly language, are called "macroprograms." By far
most programs written are macroprograms.

Beneath the macro-instructions is a set of "micro-instructions"
used to implement the processor's machine language.
Micro-instructions define the macro-level instructions, plus the
registers defined by the machine language as existing "in the
processor" (such as general purpose registers or a program
counter). Micro-instructions do not execute in the system's main
memory. Instead, they are loaded into and executed in a "writable
control store" (WCS) . (Micro-instructions also often exist in
ROMs.) Since micro-instructions execute more rapidly than
macro-instructions, it is sometimes useful for applications or
systems programmers to use the micro-instruction set to create
"microprograms."

Developers of diagnostic programs sometimes make use of
microprogramming. Programs designed to test the processor will
most likely use micro-instructions, executing them in a WCS. Some
peripheral devices possess their own microprocessors. These
devices usually also have ROMs in which diagnostic routines have
been stored. In this case the diagnostic programmer writes a
macrodiagnostic procgram that activates the microprograms residing
in the ROM.

Parts of Chapter 2 discusses .diagnostic microprograms further.
However, most of this manual concerns diagnostic macroprograms.

AN

TN

CHAPTER 2
VAX DIAGNOSTIC PROGRAMS

2.1 INTRODUCTION

The discussion in Chapter 1 consisted of an overview of diagnostic
programs. It did not deal with specific types of computer
systems. This chapter introduces characteristics of diagnostic
programs that are unique to VAX.

2.2 RUN-TIME ENVIRONMENTS FOR VAX DIAGNOSTIC PROGRAMS

VAX diagnostic programs are expected to operate in several
run—-time environments. These include user mode, standalone mode,
and network environments. The user mode environment that supports
execution of VAX diagnostic programs 1is the VAX/VMS operating
system. For almost all devices supported by DIGITAL under
VAX/VMS, a user mode diagnostic program must be developed. These
programs are used extensively at customer sites so that diagnostic
programs can be executed without bringing down VMS and thus
locking other users out of the system under test.

Many VAX diagnostic programs are designed to execute in standalone
mode. Manufacturing sites commonly use standalone programs,
because if user mode programs were used it would be necessary to
boot VMS just to run the diagnostic programs. Since standalone
programs often provide better error detection than user mode
programs, customer service personnel sometimes must use standalone
programs at customer sites. Repair of failing device parts (after
they have been identified and removed from the system under test)
almost always involves the use of standalone diagnostic programs.

Networking environments have been developed for loading and exe-
cuting diagnostic programs on VAX computer systems. One example
is the Automated Product Test (APT) run-time environment, commonly

used at manufacturing sites. Under this environment, a system
under test is connected to a "mother" system that has copies of
all diagnostic programs used. For each system to be tested, a

"script" is built. A script is a file containing a list of diag-
nostic programs to be run, along with any run-time parameters that
must be passed to the diagnostic program. The mother system reads
this script and sends the appropriate diagnostic programs, one at
a time, to the system under test. (This is referred to as
"down-line 1loading.") Once a program has been sent to the system
under test, it is started and monitnred by the mother system,
which will note any errors detected. When one program has com-
pleted execution, the next one listed in the script is sent down
the 1line and started, until all programs in the script have been
run. Programs executing on the system under test can only run in
standalone mode.

VAX DIAGNOSTIC PROGRAMS

Another example of a diagnostic network is APT/RD (for Remote
Diagnosis), which provides a method of loading and monitoring
diagnostic programs for diagnosing a system at a customer site.
With APT/RD, a temporary communications link (via phone lines) is
established between the system to be tested and a centrally
located system belonging to DIGITAL and running the APT/RD
software. Once the link is established, the central system can
step through a script of diagnostic programs to attempt to
diagnose the customer's system. Unlike the APT system wused at
manufacturing sites, though, the APT/RD system usually does not
perform down-line loading of diagnostic programs. Instead, the
programs must exist on some storage medium of the customer's
system. They are loaded "locally" from that medium, on command
from the central system. (Programs can be loaded down-line if
necessary, for example when the diagnostic 1load medium of the
system under test is malfunctioning.)

2.2.1 The VAX Diagnostic Supervisor

The previous chapter detailed the various wuses and users a
diagnostic program may encounter. The above section describes the
run-time environments supported for VAX diagnostic programs. If a
diagnostic program designer had to include proper interfaces for
all users and environments in each program he or she developed,
the task would become burdensome. For this reason the "VAX
Diagnostic Supervisor" was developed for diagnostic macroprograms
designed to run on VAX systems. The VAX Diagnostic Supervisor, or
VDS, is a control program that will 1load, execute, and provide
run—time services to diagnostic programs.

The VDS is divided into two major sections. One section 1is an
interface between the VDS and the program user and is called the
"human interface." The other is an interface between the VDS and
the diagnostic program and 1is referred to as the "program
interface.”

The human interface consists of a command line interpreter (CLI)
that receives and processes commands typed on a terminal by a
user. Commands supported by the CLI include those for loading and
running diagnostic programs, selecting which device units to test,
displaying execution summaries, and controlling program looping.

The program interface consists of a set of service routines for
service calls from the diagnostic program to the VDS, along with a
mechanism for dispatching calls from the program to the proper
routines in the VDS, These service routines provide the
diagnostic program with convenient methods for performing device
I/0, formatting error messages, controlling program loops, storing
and retrieving system-specific device parameters, prompting the
user for additional run-time ©parameters, and providing file
management facilities.

VAX DIAGNOSTIC PROGRAMS

The specific purposes of the VDS are to

1. Provide a common human interface for all diagnostic
programs. With the 1large number of VAX diagnostic
programs in existence, it is important that users not be
required to spend time learning how to use each one. The
VDS provides the user with a standard set of commands and
functions that can be performed for all diagnostic
programs.

2. Insulate the diagnostic program from the run—-time
environment. The VDS performs any communication that may
be needed between the diagnostic program and the run-time
environment, be that environment VMS (user mode), APT,
APT/RD, or standalone.

3. Insulate the diagnostic ©program from processor-specific
hardware differences. The VDS performs I/0 initialization
operations that are unique to the type of VAX processor
being used. Thus the diagnostic program does not need to
be concerned with knowing the type of VAX processor.

4. Make the programmer's job easier. Providing facilities
for formatting error messages, controlling program
looping, initiating I/O0 activity, manipulating files, and
other services not only guarantees consistency among
diagnostic programs from the user's standpoint but also

greatly reduces the development effort necessary to
produce a new program.

Later chapters of this manual discuss the VDS in detail. The VDS
is 1introduced at this point in the manual because it plays a role
in the VAX diagnostic strategy, discussed next.

The VDS is used by most, but not all, diagnostic macroprograms
written for VAX systems, as will be shown in the following
section.

2.3 INTRODUCTION TO THE VAX DIAGNOSTIC STRATEGY

In order to ensure a careful, comprehensive, step-by-step approach
to diagnosing problems, a strategy for diagnosis of VAX systems
has been developed. This strategy, generally referred to simply
as the "VAX diagnostic strategy," has been to create a hierarchy
of diagnostic programs based on hardcore requirements. Programs
higher in the hierarchy require greater hardcore (they require a
larger portion of the whole system to be operating).

VAX DIAGNOSTIC PROGRAMS

Programs higher in the hierarchy are more 1likely to provide a
versatile human interface and are less likely to require exclusive
use of the system under test. On the other hand, programs 1lower
in the hierarchy can test a device more thoroughly and thus
provide a more accurate diagnosis. Hence it 1is best, when
diagnosing a <customer's system, to begin by using diagnostic
programs of as high a level as possible and then drop down the
hierarchy as necessary until a program is found that can detect
the fault.

The diagnostic strategy has been implemented by creating wvarious
types, or "levels," of diagnostic programs. These levels were
defined by:

1. Making use of the fact that the VAX hardware can be
divided into various building blocks that, when connected
together, create a whole system. These building blocks
consist of

e A system console

e A CPU "cluster" consisting of processor, memory, and
I/0 channels

® Peripheral devices

2. Remembering that some fault diagnosis can take place while
a system's operating system is running.

3. Using the VAX diagnostic supervisor when appropriate.

By using these considerations, a set of five program 1levels has
been defined. The diagnostic programs belonging to each level
possess characteristics that differentiate them from programs
belonging to the other levels. These characteristics are related
to the program's run-time environment, hardware environment (see
below), and method of performing I/O operations (see below).

Table 2-1 introduces each program level by listing its level name
and the run-time environment associated with it.

VAX DIAGNOSTIC PROGRAMS

Table 2-1 Program Levels and Run-Time Environments

Level Run-Time Environment

1 Runs under VMS operating system.

2R Runs under VDS in user mode only.

2 (Before 1982 only. No new programs

are written for this level.)
Runs under VDS in both user and
standalone modes.

3 Runs under VDS in standalone mode
only.

4 Runs in standalone without VDS.

5 Runs in WCS or system console, not

in VAX main memory.

A program's "hardware environment" is the minimum hardware
configuration on which the program will execute. (Do not confuse
this with the program's hardcore, which is the minimum amount of
hardware that must be functioning properly in order for the
diagnostic program to execute. For example, the hardware
environment of a program to test a disk controller would be the
CPU cluster, buses connecting the controller to the cluster, and
the <controller itself, while the hardcore requirements in this
case would be the CPU cluster and the buses.)

Three different hardware environments can be defined for VAX
diagnostic programs. The hardware environments relate to the
building blocks listed above. These environments are

1. Console environment. Consists of only the system console
and the console load device.

2. CPU cluster environment. Consists of the system console,
the VAX processor, main memory, and I/O channels.

3. System environment. Consists of the system console, the
CPU cluster, and all attached peripherals. In other
words, this is the whole system.

Figure 2-1 illustrates the hardware environments for a typical VAX
hardware configuration.

VAX DIAGNOSTIC PROGRAMS

SYSTEM ENVIRONMENT

CPU CLUSTER ENVIRONMENT

CONSOLE ENVIRONMENT

A
O
RN p—
O A i e
TR - o—- -

CONSOLE STORAGE DEVICE

TK-10515

Figure 2-1 Hardware Environments for VAX Diagnostic Programs

The hardcore requirements and the hardware environments of the
levels wvary, with both 1increasing as the hierarchical level
increases. Thus level 1 programs have the greatest hardcore
requirements and largest hardware environments, while level 5

programs have the least and smallest.
The hardware environment and hardcore requirements of each program
level are listed in Table 2-2.

Table 2-2 Hardware Environments and Hardcore Requirements

Level Hardware Environment Hardcore Requirements
1 System Enough of system for
VMS to execute

2R Enough of system for VMS Enough of system for

to execute, plus UUT VMS to execute
2 Same as 2R in user mode. Same as 2R in user mode.

Same as 3 in standalone mode. Same as 3 in standalone mode.
3 "CPU cluster, UUT, load device CPU cluster, load device
4 CPU cluster Console, subset of

CPU cluster

5 Console, CPU cluster Subset of console

2-6

ST

VAX DIAGNOSTIC PROGRAMS

2.4 METHODS OF PERFORMING I/O

Perhaps the most significant difference among the various program
levels 1is the method of performing I/O operations. The various
1/0 methods are determined by the run-time environments existing
for VAX diagnostic programs, since run—-time environments generally
put restrictions on I/0 operations.

Before discussing the methods of performing I/O operations used by
each level, it 1is necessary to define three types of 1I/0
operations that are provided by the run-time environments.

e Physical I/0 - In physical I/O operations, references can
be made to the actual physically addressable units of the
device or its storage medium, such as sectors on a disk,
ignoring any block structuring or file structuring
algorithms that may have been created for the device by
software.

e Logical I/O - For 1logical 1I/0 operations, a disk-type
storage device may be referenced by addressing "logical"
blocks on the device (blocks defined by software, such as
the 512-byte blocks defined by VMS). Blocks are
referenced relative to the beginning of the storage
medium, and are numbered from # to n, where n is the last
block. File structuring algorithms are ignored.

e Virtual I/0 - With virtual I/0 operations,
software-defined blocks are referenced relative to the
beginning of a file. They are numbered from 1 to n, where
n is the 1last block in the file being referenced. This
method of I/O takes full advantage of software-defined
blocking and file structuring on the storage medium.

A more detailed discussion of the I/O types can be found 1in the
VAX/VMS I/0 User's Guide. That gquide should be read before the
development of a level 1 or 2R program is initiated.

In level 1 programs, I/0 transfers are accomplished by issuing
requests to the VMS operating system by using the $QIO system
service call, or by using the Record Management Services (RMS)
routines. Level 1 programs are expected to perform virtual, or
sometimes logical, 1I/0O operations, allowing them to execute
without corrupting existing data on any storage media and thus not
affecting the operation of any other processes executing
concurrently.

VAX DIAGNOSTIC PROGRAMS

For level 2R programs, I/O transfers are performed by issuing the
$SQIO0 service call, but in this case the VAX diagnostic supervisor
fields the call. The VDS in turn passes the I/O request to VMS,
where the I/0 operation is actually performed. Level 2R programs
are used for exercisers of devices or entire systems, and for
functional testing of devices when it is desirable to not force
other users off the system.

Physical I/0 transfers are generally used in 1level 2R programs,
since this type of transfer allows access to all areas of the
device medium and thus provides maximum wusage of the device's
logic. It provides minimum device accesstime. Use of physical
I/0 implies that a "scratch" medium will have to be placed in the
UUT in order to not corrupt valid user data, unless the device

possesses special "maintenance cylinders" reserved for use by
diagnostic programs. It also requires that the user of the
program be granted special VMS "user privileges" (see the

VAX/VMS Command Language User's Guide). While physical 1I/0 is
most often wused, 1logical or even virtual I/O0O may be more
appropriate in some cases.

Level 2 programs also perform I/O transfers using the $QIO service
call, with the VDS fielding the call. In user mode, the VDS
passes the request on to VMS. In standalone mode, the VDS itself
services the request. It is not clear that one diagnostic program
should be written to run in two different run-time environments,
since the ©program is at best a compromise of the sometimes
conflicting characteristics of the two environments (for example,
ability to run with other users in user mode vs. ability to have
unlimited system access in standalone mode). Also, the difficulty
in maintaining this duplicity of functionality within the VDS is
considerable. Therefore, LEVEL 2 DIAGNOSTIC PROGRAMS ARE NO
LONGER BEING DEVELOPED. No new level 2 programs will be accepted
for release.

Level 3 diagnostic programs perform their I/O operations directly.
That 1is, they address the device's registers and field its
interrupts. The VDS provides services for creating a "channel,"
or addressing path, to the device. This insulates the diagnostic
program from the specific VAX processor type, enabling the
programmer to create code that does not need to be concerned with
L1/0 characteristics of particular processors. Since at this
program level there are no software provisions for block
formatting or file structuring, the only I/O type possible is
physical. Logic tests (see Chapter 1) are written in level 3,
since this level allows relatively comprehensive access to the
device under test while also providing the VDS's common user and
programming interfaces.

2-8

AN

VAX DIAGNOSTIC PROGRAMS

Level 4 programs are not used to test peripheral I/0 devices and
thus do not perform I/O operations. They should only be used to
test those portions of the CPU cluster environment that are
considered to be a part of the VAX Diagnostic Supervisor's
hardcore.

Level 5 programs generally do not perform I/O operations, since
they are generally microprograms used to test portions of the
processor. However, some level 5 programs (specifically those
diagnostic microprograms that test peripheral devices) may perform
physical I/0 operations.

Table 2-3 summarizes the I/0 methods used in the wvarious program

levels. The table also indicates the types of diagnostic programs
generally assigned to each 1level.

Table 2-3 1I/O0 Methods and Program Types

Level I/0 Method Types of Programs

1 Virtual or logical, using System exercisers.
VMS QIO service.

2R Generally physical (but Exercisers and func-
virtual or 1logical are tion tests of periph-
allowed), wusing VMS QIO eral devices.
service.

2 Physical, using VMS/VDS Function tests of
QIO service. peripheral devices.

3 Physical, wusing program- Function tests and
defined 1I/O functions. logic tests of periph-

eral devices.

4 None. Function and logic
tests of CPU cluster.

5 None, or physical using Microprograms.
program-defined functions.

VAX DIAGNOSTIC PROGRAMS

2.5 APPLYING THE VAX DIAGNOSTIC STRATEGY

Applying the VAX diagnostic strategy to a specific product usually
implies developing a set of diagnostic programs to test the
product.

2.5.1 Testing The CPU Cluster

The VAX CPU cluster is tested by a set of programs, existing at
several program levels, as follows.

Level 5

® Console tests

® Processor tests
® Memory tests

Level 4

e VAX instruction set test (hardcore for VDS)
e Cache and translation buffer tests (VAX-11/750 only)

Level 3

e Memory tests (if no level 5 test possible)
e Channel adapter tests
e Cluster exerciser

This set of programs implements the VAX diagnostic strategy by
providing a set of building blocks by which a system may be
tested, starting with the level 5 basic processor tests and ending
with the level 3 "cluster exerciser," which is a program meant to
exercise all components of the cluster.

Level 5 programs may not exist for all VAX processors, since they
are microprograms. Ideally (but not necessarily), microdiagnostic
programs should be executed in a separate console processor
("front end"), making use of a writable control store (WCS).
Low-cost VAX processors may not provide these features.

Most of the programs can be used on all types of VAX processors,
so when a new processor 1is developed it is not necessary to

produce a whole new set of programs for testing the new cluster.
However, A new processor-specific module must be added to the

cluster exerciser.

VAX DIAGNOSTIC PROGRAMS

2.5.2 Testing Peripheral Devices

Thorough testing of a peripheral device requires the development
of three different diagnostic programs. For each device type
there will typically (but not necessarily) exist

1. A level 3 logic test
2. A level 3 function test
3. A level 2R function test

This group of programs implements the diagnostic strategy by
providing a facility for producing very accurate and detailed
identifications of fault conditions via the level 3 programs and
by also providing a method by which the device may be tested
without bringing down the customer's operating system via the
level 2R program.

The level 3 logic test will provide the greatest detail of error
resolution, indicating which section of logic is failing. This
program will be used by technicians to repair bad 1logic boards,
and will provide very high test coverage. Some devices contain
ROM-resident microprograms ("self-tests") that perform logic
testing, making a level 3 logic test unnecessary.

The level 3 function test will provide a comprehensive test of all
of the device's functions. This program will be used to determine
accurately whether or not a device is operating correctly. This
is the definitive function test and provides very high test
coverage. Level 3 function tests are usually required even if the
device possesses self-testing capabilities, because self-tests
generally aren't capable of complete detection of function
failures.

The level 2R program will typically consist of a subset of the
level 3 function test. It will test as much of the device's
functionality as can be tested in the user (VMS) environment. The
tests it «contains are exact or approximate copies of tests
existing in the level 3 program.

A typical sequence of use for these programs, when dealing with a
system at a customer site, is as follows.

1. The customer (or field service) suspects a fault existing
in the device.

2. The level 2R program‘is run to see if the error can be
detected without stopping the operating system. If the

error is found, go to step 4.

3. If the level 2R program cannot identify the fault, the
operating system. is brought down and the level 3 function
test is run.

VAX DIAGNOSTIC PROGRAMS

4. The fault is identified and the failing FRU 1is replaced.
The operating system is then brought back up.

5. The failing FRU is brought back to DIGITAL, where the
level 3 logic test, the level 3 function test, or perhaps
a module test station is wused to identify the failing
logic on the FRU. The FRU is repaired.

2.6 GUIDELINES FOR WRITING VAX DIAGNOSTIC PROGRAMS

This sections contains general guidelines that should be followed
when writing VAX diagnostic programs.

2.6.1 Level 1 Guidelines

Level 1 diagnostic programs are usually used as exercisers of the
entire hardware system. Level 1 is used when it is necessary to
cause various concurrent activities to take place, using numerous
types of devices and other hardware and software resources
provided by the system.

Since no standard human interface exists for level 1 programs, it
is important for the program developer to design a convenient,
"user-friendly" interface using such techniques as English-like
commands, menus, and detailed "help" messages.

Error reporting will also be the responsibility of the program
designer. However, much use can be made of the system software's
error reporting facilities.

2.6.2 Level 2R Guidelines

Level 2R programs run under the VDS is user mode. They test
device functionality and must test as many of a device's functions
as can be performed under the constraints of the operating system.

I1/0 is performed by issuing QIO requests -to the VDS. These
requests are passed directly to VMS, which performs the indicated
operations and returns an error status. Actual I/0 activity is
controlled by VMS device drivers. Full use should be made of the
returned error information, which may include device register
contents. All information made available should be displayed to
the user via the VDS error reporting facilities.

The level 2R program should be written after the level 3 function
test has been developed, since the level 2R program should be a
subset of the level 3 program. Take the level 3 program, change
the I/0 method from the channel services of the level 3 (see
below) to QIO <calls, and remove any functions that the VMS
operating system will not allow to be performed.

2-12

TN

TN

VAX DIAGNOSTIC PROGRAMS

2.6.3 Level 2 Guidelines

DO NOT WRITE ANY NEW LEVEL 2 DIAGNOSTIC PROGRAMS.

2.6.4 Level 3 Function Tests Guidelines

Level 3 programs run under the VDS. There is no operating system
software to 1limit the functionality or access rights of the
diagnostic program. However, the program should use VDS channel
services (discussed 1in the following chapters) for creating data
paths to the device under test in order to eliminate the need for
diagnostic programs to concern themselves with processor-specific
details of bus adapter mapping.

I1/0 operations are initiated and interrupts are fielded by the
diagnostic program. Since these programs have unlimited access to
system hardware resources, detailed error messages can and should
be created that contain dumps of pertinent registers.

Level 3 function tests should test every function the the device
is capable of performing. Illegal orders and combinations should
also be tried.

Not only should the data transfer functions be performed, but
electromechanical functions -should also be tested to assure that
they operate within specified parameters and time intervals, as
should the operater-related functions, such as setting the
write-protect switch.

All timing operations must be performed by wusing the timing
services provided by the VDS, since the VDS takes into account the
type of VAX processor being used and corrects for timing
differences between processor types.

2.6.5 Level 3 Logic Test Guidelines

Because logic tests are designed to help technicians repair
malfunctioning 1logic boards, it 1is important that they provide
good fragmentation of activity in the 1logic, causing as little
overall activity as possible at a given point in execution time.
Every effort should be made to concentrate electrical activity to
one small section at a time. The extent to which this is possible
depends on the particular hardware design, and it is often more of
an ideal than an attainable goal.

VAX DIAGNOSTIC PROGRAMS

The first section of logic to be tested should be that which is
most likely to Dbe depended on by other logic. Thus a general
sequence of steps this type of program might contain would be as
follows.

1. Test the interface between the device's controller and the
I/0 bus to which it is attached, including address
decoding logic and logic used 1in referencing controller
registers.

2. Test the controller's commands and the 1logic associated
with each command, using the device's "maintenance mode"
if applicable.

3. Test the data transfer functions of the device, again
using maintenance mode.

In each step, invalid and borderline conditions should be checked.
For example, purposely formatting data improperly, issuing illegal
function codes, and making illegal references to device registers
are techniques that can be used.

All timing operations must be- - performed by using the timing
services provided by the VDS, since the VDS takes into account the
type of VAX processor being used and corrects for timing
differences between processor types.

2.6.6 Level 4 Guidelines

Level 4 programs are only used to test those parts of the system
that belong to the VDS environment's hardcore, and that are not
tested by level 5 programs. For example, level 4 programs are
needed to test the VAX instruction set, the translation buffer,
and cache of some (but not all) VAX processors.

If a new level 4 program needs to be developed, the following
rules should be adhered to.

1. Use straight-line code (no subroutines). This. makes it
easier for the wuser to step through the program when
necessary.

2. Use a minimum instruction set, at least at the beginning
of the program.

3. Write the program in position-independent code, so that it
may be loaded and executed in any section of memory in
case there is a bad area of memory.

AN

RN

VAX DIAGNOSTIC PROGRAMS

4, Create a section of code to handle unexpected interrupt
conditions, such as machine checks or other traps.

5. Do not use any terminal I/O routines unless all the 1logic
required to perform the I/0 has been previously tested.

6. When an error is detected, execute the HALT instruction.

7. Use the general purpose registers (GPRs) to pass
information to - the user. For example, on a data
comparison error, the expected and actual bit patterns can
be placed in the GPRs.

8. Store the current test and subtest numbers in some
location, such as address @, so the user can obtain them.

9. Provide very precise program documentation. Since no
terminal displays can be provided, the user must be able
to use the PC of a failure to find out exactly what type
or error occurred and what was happening to cause the
error. This information must be clearly indicated in the
program listing.

2.6.7 Level 5 Guidelines

Level 5 programs are microprograms. Since the microcode and
hardware design of each VAX processor type is different, there
must be a separate set of level 5 programs for each processor
type. Following are general rules that should be followed when
developing diagnostic microprograms.

1. Diagnostic microprograms should always be designed to
perform bottom-up testing.

2. Program loops should be as short as possible, in order to
isolate electrical activity to as small an area of the
logic as possible. Ideally, these loops should enable a
technician to isolate a fault to the failing component.

3. Error reports should be precise enough for the technician
to 1locate the <code 1in a program listing. The listing
should contain a clear description of what logic was being
tested and which component(s) may be failing. Avoid
referring to components by their "E-numbers," since these
can change when ECOs are issued.

4. A level 5 program should be able to test every component
except those requiring an external stimulus.

CHAPTER 3
THE STRUCTURE OF A VAX SUPERVISOR
DIAGNOSTIC PROGRAM

3.1 INTRODUCTION

This chapter describes the composition of a diagnostic program
designed to run under the VAX Diagnostic Supervisor (VDS). It
discusses all of the functions that must be performed by the
diagnostic program, such as device initialization and testing,
error reporting, and input/output functions. It also provides an
introduction to the macros detailed in Chapter 4 by indicating
where within the diagnostic program the various macros should be
used.

3.1.1 Overview Of The VAX Diagnostic Supervisor

The VDS is divided into three major segments, each segment
performing a separate function. These segments are the command
line interpreter, the dispatcher, and the system service routines.

e Command Line Interpreter

The command line interpreter provides the human interface
to the diagnostic program. It allows the diagnostic
program user to select which programs to execute, which
portions of that program to run, and which of the system's
device units to test.

The command 1line interpreter implements the commands
described in the VAX Diagnostic Supervisor User's Guide.

e Dispatcher

The dispatcher controls the operation of the diagnostic

program. It 1is given control whenever the command line
interpreter recognizes a START or RUN command. The
dispatcher will call the wvarious segments of the

diagnostic program (such as the program's initialization
code, tests, <cleanup code, and summary routine, all of
which are discussed in this chapter) at the appropriate
times.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

System Service Routines

The system service routines provide run-time services to
the diagnostic program to facilitate many of the functions
a diagnostic program must perform, such as I/O operations,
error reporting, and event synchronization.

Figure 3-1 illustrates the VDS segments and their relationship to
a diagnostic program.

3.1.2

USER

~ COMMAND
LINE DISPATCHER IR
INTERPRETER

DIAGNOSTIC
PROGRAM

.

UNIT UNDER TEST

TK-10516

Figure 3-1 VDS Overview

Overview Of A VDS Diagnostic Program

Every diagnostic program must possess several major segments, as

follows:

Initialization Code

This is code that is executed before a device unit is
tested. It performs the operations necessary for creating
a data link to the unit.

Tests

These are the actual device tests. They report any errors
detected and provide the ability to create loops.

Cleanup Code
This code performs any operations that might be needed to

leave the UUT in a state such that it is available to the
next system user.

TN

TN

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

e Tables

There are various tables residing 1in the diagnostic
program for the purpose of enabling the VDS to control the
diagnostic program's operation.

Additionally, a diagnostic program can possess other optional
segments, such as

® A summary routine

e Error reporting routines

e Interrupt service routines

@ Condition handling routines

Notice that the diagnostic program contains no dispatching
mechanism. The program should be viewed simply as a set of
low-level routines to be called by the VDS when needed.

Following are 1illustrations of program flow for both serial
testing and parallel testing of devices. As will be seen as this
chapter is read, these program flows are accomplished through
interaction between the diagnostic program and the VDS.

Program Flow for Serial Testing:

Get RUN or START command.
Get passes_requested.

Passes executed = 0.
REPEAT
Unit number = 0.
REPEAT

Call initialization code.
Call selected tests.
Call summary code.

Unit number = unit number + 1.
UNTIL unit number = max_unit_number.
Passes executed = passes executed + 1.

UNTIL passes_executed EQL passes requested.
Call cleanup code.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Program Flow for Parallel Testing:

Get RUN or START command.
Get passes requested.

Passes executed = 0.
REPEAT
Unit number = 4.
REPEAT
Call initialization code.
Unit number = unit number + 1.
UNTIL unit number = max_unit number.

Call selected tests.

Call summary code.
Passes executed = passes executed + 1.
UNTIL passes_executed EQL passes requested.

Call cleanup code.

3.1.3 Memory Layout

Figure 3-2 shows the layout within memory of the various pieces of
software existing when a VDS diagnostic program is executing. All
addresses are virtual. In standalone mode, the virtual addresses
are also the physical addresses, so the illustration represents a
true picture of the actual program layout in memory. In user
mode, memory management is in operation and thus the virtual
addresses shown have no relation to the actual program 1layout in
memory.

As can be seen in the figure, the base address of a diagnostic
program is 200 (hex). (When a diagnostic program is linked, a
base address of 200 (hex) must be explicitly specified.) The
loadable 1image of a diagnostic program may not extend beyond
virtual address F9FF (hex). Thus the maximum size for the
loadable image of a diagnostic program is 63487 (decimal) bytes.

Addresses from FA@@ to FFFF are used by the VDS to communicate
with APT. The VDS loadable image starts at virtual address 10000
(hex). At run time, the VDS occupies a contiguous portion of

memory starting at 10000 (hex). The total size of this area
depends on such parameters as the type of processor being used,

memory size, and the number of attached devices.

Two areas of memory are used to allocate buffer space to

diagnostic programs. The first area is any space that may exist
between the top of the diagnostic program's 1loadable image and
address FAQ0 (hex) . The second (and generally 1larger) area

consists of addresses above the highest address used by the VDS.
Allocation of this buffer space to a diagnostic program is
discussed in Section 3.13.3, Memory Allocation.

TN

S

e

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

VIRTUAL ADDRESS (HEX)

0
UNUSED

200
DIAGNOSTIC PROGRAM

BUFFER SPACE
FOFF

FAQO

AREA USED FOR APT
COMMUNICATION

10000

VDS

BUFFER SPACE

TK-10517

Figure 3-2 VDS Memory Layout

3.1.4 1Introduction To The Macros

All linkages between the diagnostic program and the VDS are
defined by a set of macros. These macros can be divided into four
main groups.

e Program Structure Macros

This group consists of those macros wused to define the
various sections, tables, and data structures making up
the diagnostic program. For example, every test must be
delimited by the $DS BGNTEST and $DS_ENDTEST macros.
Using the program structure macros enables the VDS
dispatcher to 1locate and <call the initialization code,
tests, and cleanup code. Most of the macros in this group
are required to exist in every diagnostic program.

e Program Control Macros

These macros are used to affect the ©program's execution
path and provide such facilities as 1looping and
branch-on-error. For example, the $DS_CKLOOP macro can be
used to define the upper bound of a program loop.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

e System Service Macros

This group is used to call service routines. An example
service macro is $DS_WAITMS, which can be used to cause a
program delay of a specified number of milliseconds.

e Symbol Definition Macros

This is a set of macros that define global symbols used by
the other macros, the VDS, and the diagnostic program.
For example, the $DS HDRDEF macro defines symbols for the
locations within the diagnostic program's header (see
Section 3.3.1).

This chapter will not give detailed descriptions of the macros,
but it will indicate when and where each macro (except the symbol
definition macros) should be employed. The macros are discussed
in detail in Chapter 4.

3.2 P-TABLES

3.2.1 Introduction To P-Tables

In order to test a device, a diagnostic program must have access

to the device's characteristics. Since some device
characteristics are system-specific, it is 1impossible to define
them permanently in the diagnostic program. Instead, it is

necessary to provide a means by which these system-specific
characteristics can be specified at run time. The VDS provides
the "hardware parameter tables," or simply "p-tables," for this
purpose.

A p-table is a data structure containing the information about a
device that is needed in order for a diagnostic program to access
the device. P-tables are constructed by the VDS when the program
user types the ATTACH command (refer to the VAX Diagnostic

Supervisor User's Guide). Each time the ATTACH command Is used, a
new p-table 1is created. Once the VDS has created the p-tables,
the diagnostic program can reference the tables to obtain
information necessary for testing a UUT. Thus the burden of
determining device characteristics is removed from the diagnostic
program itself.

3-6

—~~

TN,
(¢ Y

P

—
/

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

When the user attaches a device, one of the parameters he or she
must 'specify 1is the device's "link." The link is the piece of
hardware to which the device is connected. The 1ink must have
been previously specified with another ATTACH command so that its
p-table already exists. A set of ATTACH commands will result in a
tree structure of device 1links. The root of this tree is a
pseudo-device called HUB. This pseudo-device was created because
the actual hardware interconnect existing depends on the type of
processor (for example, the SBI on the VAX-11/788). In general,
processors and buses are linked to HUB, controllers are linked to
buses, and device units are linked to controllers. Figure 3-3
illustrates the manner in which p-tables describe a hardware
system.

11/780 | gg, | UNIBUS .
CPU ADAPTER .
RKO6
DRIVE 0
RK611
CONTROLLER
RKO06
DRIVE 1
TYPE: DW780
LINK:
NAME: Dwe | pTaBLE FOR
UNIBUS ADAPTER
DEVICE CHARAC-
TERISTICS
TYPE: RK611
LINK: DWO
NAME: DMA P-TABLE FOR
DEVICE CHARAG. | DISK CONTROLLER
TERISTICS
TYPE: RKO06 TYPE: RKO6
LINK: DMA LINK: DMA
NAME: DMAO P-TABLE FOR NAME: DMA1 | P-TABLE FOR
DISK DRIVE 0 DISK DRIVE 1
DEVICE CHARAC-
TERISTICS

TK-10518

Figure 3-3 Sample Hardware Configuration
and Associated P-Tables

3-7

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The p-table for a particular device will contain the information
provided by the ATTACH command arguments. Each p-table will
contain the following standard information:

e Device type - This is the product name for the device,
such as RK@6 or TM@3.

e Device's generic name - This is the name with which the
device will be referred to, such as DRB1l or DMA#.

e Address of p-table for device's link

e Device characteristics - The types of information that
must be 1included in a p-table to sufficiently describe a
device depend on both the type of device and its 1link.
For example, devices linked to a UNIBUS require the UNIBUS
CSR address and bus request 1level, plus the device's
interrupt vector address.

3.2.2 P-Table Format

P-tables have a standard format. Each p-table is divided into two
sections. The first section contains device-independent fields. -
All p-tables for all devices <contain these fields. Each
device-independent field in the p-table has a mnemonic assigned to
it which can be used by the diagnostic program when these fields
are referenced. The second section of the p-table contains
device-dependent information. This section is unique to the type
of device being described.

Figure 3-4 shows the standard layout of all p-tables.

Following is a description of the device-independent p-table
fields.

HPSQ DEVICE - A VMS-type quadword descriptor of the device
name string (see HPST DEVICE below). That is, the first word
of the field contains the length (number of characters) in the
device name string, the next word is unused, and the following
longword contains the address of the string (the address of
HP$T DEVICE).

HPSW SIZE - The size of the p-table in bytes. This includes
both the device-independent and the device- dependent p-table
fields.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

31 16 15 0
0 (decimal)
HP$Q_DEVICE .
HP$B_DRIVE HP$B_FLAGS HP$W_SIZE 8
12
HP$T_DEVICE 6
20
HP$A_DEVICE 24
HP$A_DVA 28
HP$A_LINK 32
HP$W_VECTOR 36
40
HP$T_TYPE
44
48
HP$A_DEPENDENT J 52
¥ : o2
[]
[]

TK-10519

Figure 3-4 P-Table Layout

HPSB FLAGS - Flags used by the VDS when the device Iis
initialized. Flags are defined as follows.

e HPSM ALLOC - (bit @) - If set, indicates that the VDS must
request VMS to allocate (SALLOCATE system service) the
device before it can be tested in user mode.

e HPSM WASALL - (bit 1) - Set by VDS if a device has been
successfully allocated.

e (Bits 2-7) - Unused.

3-9

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

HPSB_DRIVE - The unit number of the device. This 1is the
number appearing at the end of the device's generic name, such
as '7' in ' TTA7'.

HPST DEVICE - An ASCII string representing the device's
generic name. All device names begin with ' ', as in ' _RHO'.

HPSA DEVICE - The wvirtual address of the 1lowest-addressed
device register. The type of register being pointed to
depends on the device type. For example, it would be a CSR
for a UNIBUS device, a configuration register for an SBI
device, and so on.

The address must be virtual, in Pl space (bit 30 set). This
is because when memory management is enabled in standalone
mode, the VDS maps all physical I/0 addresses through virtual
Pl space.

HPSA DVA - This is the base of the wvirtual address space
assigned to this device. Devices linked to this device will
have address assignments relative to this base address. When
the VDS constructs a new p-table for a device linked to this
one, it copies this field into the linked device's HPSA DEVICE
field. When the device address for the new device is fetched

from the user, it can be added to the base address already in
HP$A DEVICE. '

The address must be virtual, in Pl space (bit 30 set). This
is because when memory management is enabled in standalone
mode, the VDS maps all physical I/0 addresses through virtual
Pl space.

The HPSA DVA field is not always relevant. An example of its
use is the case of UNIBUS adapters. Each UNIBUS is assigned
to a certain base address. The addresses of devices connected
to a particular UNIBUS are added to the UNIBUS's base address
to obtain the device's actual physical address. A UNIBUS's
base address 1is stored in the HPSA DVA field for a UNIBUS's
p—-table. When a controller is 1linked to the UNIBUS, its
HPSA DEVICE field will be initialized to the value contained
in the UNIBUS's HPSA DVA field. Subsequently, the wuser will
be prompted for the controller's 18-bit address. This address
can be stored in the 1low-order 18 bits of HPS$SA DEVICE to
result in a full physical address for the controller.

HPSA LINK - The address of the p-table for the device to which
this one 1is 1linked. If this device is linked to HUB,- the
field contains #@.

HPSW VECTOR - If relevant, contains the vector address through

which the device will interrupt. This address is an offset
into the System Contol Block (SCB).

3-190

SN

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

HPST TYPE - Contains a counted ASCII string representing the
device type, such as DW780, RH780, or RK61l1l.

HPSA DEPENDENT - The first location of the device-dependent
section of the p-table.

The HPSW SIZE, HPS$Q DEVICE, HPS$B DRIVE, HPST DEVICE, HPSA_LINK,
and HPST TYPE fields are filled in automatically by the VDS. The
other fields are loaded (if needed -- not all fields are relevant
to all devices) in accordance to directions contained in the
p-table descriptors (see below).

The fields within the device-dependent section also have
mnemonics, but they are unique to the device (see below).

3.2.3 P-Table Descriptors

3.2.3.1 1Introduction To P-Table Descriptors - The VDS builds a
p-table by referring to a "p-table descriptor." This is a set of
instructions that indicate the size and format of the

device-dependent p-table fields. When a user types an
ATTACH command, the VDS will refer to the p-table descriptor of

the specified device type in order to determine how to construct
the device-dependent fields of a particular p-table.

Following is a sample ATTACH command dialogue. Portions of the
dialogue that are typed by the user the VDS are underlined.

DS> ATTACH

Device type? RKG61l1l

Device 1ink? DW@
Device name? DMA
CSR? 7774490
VECTOR? 210

BR? 4

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

In the sample, the first three prompts fill in device-independent
fields of the p-table. These prompts are generated by the VDS and
will be displayed every time the ATTACH command is used. The last
three prompts are device-specific. These prompts are defined by
the p-table descriptor for the RK61l1.

Instructions within the p-table descriptor specify to the VDS the
following types of information.

e The p-table's size
e The device type

e A prompting message for each device-dependent hardware
parameter to be stored in the p-table

e The format in which user response to the device-dependent
prompts is to be interpreted

e The p-table field in which the responses to the
device-dependent prompts are to be stored

3.2.3.2 Location of P-Table Descriptors - P-table descriptors
generally reside in the VDS. When a diagnostic program is written
to test a device for which the VDS does not possess p-table
descriptors, it is the reponsibility of the diagnostic program
developer to also create a p-table descriptor for the device.
This descriptor will then be incorporated into the VDS.

Note: It is important to work in cooperation with the VDS support
group when developing a p-table descriptor.

P-table descriptors may also be included 1in the diagnostic
program. When processing an ATTACH command, the VDS will first
check the diagnostic program to see if a p-table descriptor exists
for the specified device type. If none exists, the VDS will check
its own p-table descriptors to locate the appropriate one. Thus,
a descriptor residing in a diagnostic program will have precedence
over a descriptor for the same device residing within the VDS.

Including the descriptors in a diagnostic program has several
disadvantages.

e They can only be used by the diagnostic program in which
they are defined.

e The devices they describe cannot be attached unless the
diagnostic program has been loaded.

3-12

—

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

e These diagnostic programs will not be executable under
APT. Other special environments, such as Customer-
Runnable Diagnostics (CRD) may also place prohibitions on
execution of programs containing their own p-tables.

e The autosizer program will only support devices for which
the descriptors reside in the VDS.

When development of a program for a new device begins, the p-table
descriptor should be first placed in the diagnostic program until
the descriptor design, and 1indeed the design of the device
hardware 1itself, has been solidified. Once the p-table's design
is certain, it can be included in the VDS. Only in rare instances
should it be necessary to release a diagnostic program that
contains its own p-table descriptors.

3.2.3.3 Creating P-Table Descriptors - The following general
guidelines should be followed when creating a p-table descriptor.

e Each user prompting message should provide a clear
indication of what information the user must provide.

e Responses should be requested in a format that is relevant
to the particular type of data being requested. For
example, UNIBUS addresses should be formatted in octal
instead of hexadecimal, since that is their normal format.

® Only include information that is needed for referencing a
device. This 1information may include such items as the
device's address, interrupt vector, BR or TR level, and so
on. Do not include information that will only be used by
one diagnostic program; remember that a p-table for a
particular device will be used by all diagnostic programs
that test that device. Information needed by a particular
program or test should be obtained via the $DS ASKxxxx
macros (see Chapter 4). -

There are two steps to creating a p-table descriptor. First, a
"skeleton" for the p-table's device-dependent fields must be
defined. This skeleton is a representation of the memory space
required for the p-table. When the VDS builds a p-table in
response to an ATTACH command, skeletons of bo th the
device-independent and device-dependent fields are copied into a
dynamic memory storage area, and the fields are filled in with the
proper information. The MACRO-32 skeleton for the
device-dependent fields is defined by using the SDEFINI, S$DEF, and
SDEFEND macros, which are defined in the VMS system library
LIB.MLB. An example skeleton is as follows:

3-13

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

.MACRO $DS RK611 DEF S$GBL

$DEFINI RK611, S$GBL, HP$A DEPENDENT

$DEF HP$L RK611 CSR, .BLKL, 1 ;18-bit CSR address
$DEF HPSB RK611 BR, .BLKB, 1 ;UNIBUS BR level
$DEF HPSK RKG611 LEN

$DEFEND RK611, SGBL, DEF

.ENDM $DS_RK11l DEF

Note: The final $DEF statement in the example defines the 1length
of the p-table.

The BLISS-32 version of this example is:
BLISS-32:

$DS_RK611 DEF=
SET
HPSL RK611 CSR
HPSB_RK611 BR
TES; B

[HP$K_LENGTH+0,0,32,0],
[HPSK_LENGTH+4, 0,8,]

This skeleton represents the device-dependent fields for a p-table
of an RK61l1l controller. Each field is assigned a mnemonic. There
are two fields, named HPSL RK611 CSR and HPSB_RK611 BR. (See
Section 3.2.3.4 for field naming conventions.)

Notice that the MACRO-32 skeleton is defined as a macro. When the
p-table descriptor 1is added to the VDS, this macro is made
available to diagnostic programs. After the diagnostic program
calls this macro it can reference the p-table fields by using the
mnemonics. (See the MACRO-32 example in Section 3.2.4.)

Notice that the BLISS-32 skeletion is simply a field declaration
statement. The BLISS-32 example in Section 3.2.4 indicates how
the field declaration is used by a diagnostic program.

The second step in creating a p-table descriptor involves
generating the instructions that the VDS will use when filling in
the device-dependent fields. Also, instructions must be developed
for filling 1in the following device-independent fields, if they
are relevant to the device: HPSA DEVICE, HPSA DVA, HPSB FLAGS,
and HPSW_VECTOR. B -

o~ //-\\

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

These instructions are produced by using a set of macros. The
macros make use of a temporary storage location referred to as the
"value register." Certain macros cause information to be read from
the ATTACH command line and placed into the value register. Other
macros can manipulate the value register's contents, and still
others can transfer those contents into fields of the p-table.
The p-table descriptor macros are as follows:

e SDS SINITIALIZE - This is the first macro in any p-table
descriptor. It indicates the device type, the p-table -
size, the maximum number of units allowed, and the name of
the device driver used for level 2 diagnostic programs
(see Chapter 2).

e S$DS_SNAME - Specifies a format to which the device unit's
generic name must conform.

° $DS_$DECIMAL, $DS_$OCTAL, $DS_$HEX, $DS_$STRING,
$DS SLOGICAL - Each of these macros is used to obtain
hardware parameters from the user when an ATTACH command
is typed. The exact macro to use depends on the format in
which the input string of the particular parameter is to
be interpreted. For example, the $DS_$DECIMAL macro
should be used if the user is to type a decimal number,
and the $DS $STRING macro is used if an alphabetic string
is to be typed. For each of these macros, the programmer
specifies a wuser prompting message. Information is read
from the ATTACH command 1line and stored in the wvalue
register.

e S$SDS $SSTORE, $DS S$SADD, S$DS SFETCH - These macros are used
to “manipulate data that was received from a $DS_$DECIMAL,
$DS_$0CTAL, $DS_$HEX, $DS_$STRING, or $DS_$LOGICAL command
and placed in the value register. $DS SSTORE will place
the value register's contents 1into a field within the
p-table. $DS_SADD will add the value register's contents
to the current <contents of a field. $DS SFETCH will
retreive data from a field and place it, right-justified,
in the value register.

) $DS_$COMPLEMENT, $DS_$CASE, $DS_$LITERAL - These macros
are used to alter the contents of the value register.

e S$DS_SEND - The $DS_SEND macro is used to indicate the end
of a p-table descriptor.

Example 3-1 shows how these macros are used.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

$O5.$INITIALIZE RK&11y RRAILEK._LEN, Oy DM

FNE L ENAME FTUSM.CONTROLLER, It
FN5.$00TAL CHRy 740000y 777776
N5 $ETORE HF$L . .RK&11CESR, 0, 32
DS E5TORE HE$A DEVICE, Oy 18
N5 $0CTAL VECTORy 2y 776

EN5 . 6STORE HF$W.VECTOR, 0y 9

$05 SR TMAL ERy 4, 7

$N5 #STORE HF$B_RK&11_BRs Oy 8
OIS _SEND

Example 3-1 P-Table Descriptor for RK611l Disk Controller

This example will produce the dialogue 1illustrated in Section
3.2.3.1. Explanations of the macro arguments can be found in
Chapter 4.

This example will:

1. Cause the VDS to request the user to type a CSR address.

2. Store the CSR address in HPSL RK611] CSR, bits @ through

31, and in HP$A DEVICE, bits @ through 17.

3. Cause the VDS to request the wuser to type a vector
address.

4. Store the vector address in HP$W_VECTOR, bits @ through 8.

5. Cause the VDS to request the user to type a BR level.

6. Store the BR level in HP$B RK611 BR, bits @ through 7.
Following is a more complex example -- the p-table descriptor for

the RH780 (MASSBUS adapter for the VAX-11/780). Example 3-2
contains the MACRO-32 and BLISS-32 skeletons.

3-16

K ~

—~

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

MACRO-321¢

CMEDRD $NE RH7B0_DEF $GERIL
POEFINT RH780 s $GRLyHF$A_DEFENDENT
FUEF HF$B_ . RH7B80_.TRy s RLKEs 1 # TR number of adarter
SOEF HPSB_RH780 _BRy BLKEs 1 # BR level of adarter
ENEF HF$R_RH780_LEN
FROEFENT RH780»¢GRLy DEF

»ENDM FNE _RH780.DEF

BLIGG-222

$NS _RH7B0_DEF =
SET
HF$E.RH780.TR
HFER.RH750_BR

TESS

LHF$K_LENGTH+0+0:8501,
CHF$K.LENGTH+1,0+8,01

HA

Example 3-2 P-Table Skeletons for RH780 MASSBUS Adapter

Example 3-3 presents the p-table descriptor for the RH784. This
descriptor causes the following events to occur:

1. The VDS will request the user for an SBI transfer request
(TR) 1level.

2. The TR level will be stored in HPSB_RH780 TR, bits @
through 7.

3. The TR level 1is also stored in HP$A DEVICE, bits 13
through 16.

4. The TR level is also stored in HPSW_VECTOR, bits 2 through
5.

5. The VDS will request the user for a BR level.
6. The BR level is stored in HP$B _RH780 BR, bits @ through 7.

7. The BR level is also stored in HPSW VECTOR, bits 6 through
7.

8. The value register is loaded with the value "6."
9. The "6" is placed in HPSA DEVICE, bits 28 through 31.

(This will create a wvirtual Pl space address for the
physical address 20000000 (hex).)

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

lg.

11.
12.
13.

14.

The contents of HP$A DEVICE 1is loaded into the wvalue
register.

This value is written into HPSA_DVA.

The value register is loaded with the value "1."
The "1" is placed in HPSA DVA, bit 14.

The "1" is placed in HPSW_VECTOR, bit 8.

$NS_RH780_DEF
NS $INITIALIZE RH780sRH7BOSK_LEN,8

05 ENAME FTOEM_UNIT,» RH
$HS_$DECIMAL TR»1#15

NS $8TORE HF$RB.RH780_TR+0,8
NS $STORE HF$A.DEVICEs 13,4
$05. . $STORE HF$W. . VECTOR» 2+ 4
$NS..$DECIMAL BRy4,7

$NS . $STORE HF$R_RH780_BR+0,8
$NE_$STORE HF$W_VECTOR» &9 2
NG .SLITERAL &

N5 $STORE HFP$A_DEVICE, 28,4
$OS.HFETCH HF$A_DEVICE 0,32
$08. $STORE HF£A_ IVA, 0,32

D5 LITERAL 1

FUS . $STORE HF$A_TIVA»10,1
$NS_$STORE HF$W.VECTOR,8»1

NS SEND

Example 3-3 P-Table Descriptor for RH780 MASSBUS Adapter

Note that several fields of a p-table created from this descriptor

require

several steps. For instance, the HPSA DEVICE field is

constructed by:

Setting the high order four bits to "6" (bit 3@ indicates’
Pl space and bit 29 indicates VAX-11/780 I/0 addresses).
Note: This is an important step to remember. The VDS

‘maps Pl addresses to I/O space when memory management is

turned on. Therefore device addresses must be constructed
as virtual addresses in Pl space.

Using the TR level to set bits 13 through 16, which will
select the address space for the indicated TR level.

In this case the contents of HP$A DEVICE are copied into
HP$A DVA, and bit 10 of HPSA DVA is set.

3-18

P

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

(Note: When a device is attached to this RH780 adapter, the VDS
will initialize the HPSA DEVICE field of that device to the
contents of the adapter's HPSA DVA field. The p-table descriptor
for the device must be careful not to overwrite bits in
HPSA DEVICE that were loaded in HPSA DVA of the adapter. This
example illustrates that it is important, when designing a p-table
descriptor, to first obtain copies of the descriptors for all
possible 1link devices. The design of the new p-table must be
coordinated with p-table design for these 1link devices.)

3.2.3.4 Creating Names for Device-dependent Fields - For easy
reference, all device-dependent fields of a p-table should be
assigned mnemonics. These mnemonics can then be wused by the
p-table descriptor macros DS_SSTORE, DS_SADD, and $DS_SFETCH.
Also, the diagnostic program can use the mnemonics when it
references a p-table.

The field naming conventions for p-tables follow the VMS standard
for data structure naming conditions. The field name begins with
the name of the data structure (HP), followed by a dollar sign
($), followed by the data type specifier (L for longword, W for
word, and so on, as listed 1in Table 5-1), followed by an
underscore (_), followed by the field name. For example, the
RK611 <controller's p-table has a device-dependent field for
storing the controller's CSR address. This field 1is named
HP$L RK611 CSR.

Note: Many p-table descriptors were developed before this
standard was implemented. Previously, the standard was for field
names to consist of the device name, dollar sign, data type,
underscore, field name, as in 'RK611S$SL CSR'. 1If the mnemonics for
the device-dependent fields of a particular p-table do not match
the current standard, then they will conform to this old standard.

3.2.4 Referencing P-Tables from a Diagnostic Program

A diagnostic program gains access to a p-table by using the
$DS_GPHARD macro. The program indicates a unit number as an
argument to the macro, and the VDS will pass to the diagnostic
program the base address of the p-table for that unit. The
program can then access fields within the p-table by using the
base address and the predefined field mnemonic offsets (see
above) . The $DS GPHARD macro 1is discussed further in the
description of initialization code (see Section 3.5).

Example 3-4 provides an example of referencing a p-table in a

MACRO-32 program. Notice that before the p-table field mnemonics
can be referenced, the macros which define them must be called
(SDS_HPODEF for the device-independent fields and, in this case,

$DS_RK611 DEF for device-dependent fields).

3-19

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

LOG_UNIT?
FTARLE?
DEV_NAM?

INCL

1042

40% 1

Example 3-4

(Note:
p—-table

Example 3-5 is a BLISS-32 example of referencing p-tables.

*

3

$NS_HFODEF '
$0S.RK611.DEF ’

*

Nefine

4

+BLKL 1

+BLKL 1

+ASCIC \RK611N
LOG_UNIT

$NS_GFHARD_S DEVNUM=LOG_UNIT,» -
ADRLOC=FTARLE

CHMFL ROy DS%$_NORMAL

ENEQ 40%

MOVL FTARLE, R2

MOVAL DEV_NAM» RO

CMFL (RO)s HP$T_TYFE(RZ)
RNEQ 20%

CMFW 4(ROYy HF$T_TYFE+4(R2)
REQL 30%

$0S_AKORT ARG=TEST .
MOVZEL HF$E_RK&411_BR(R2)y R10
MOVL HF$A_DEVICE(RZ2)» R11

*

+

The function

- e

-

P T T U TR TR TR DR TR 1

This code is meant only to show an example of the
mnemonics.
included in a real diagnostic program.)

Iefine device—inderendent =-table fields
RK611 device-derendent fields

Flace to store log, unit no.
Flace to store rointer

Ascii name of desired device

Get FPtable for next lod.

++ address in PTARLE

If 811 units done

then branch to re-init.

Use R2 as structure rointer

Set ur mointer to ture

Check length and first 3
characters of ture.,

Check last 2 characters

If it matchesy OK

If not RKé&1ls abort test

Set R10 to BR level

Set R11 to CSR address

unit

N

Referencing P-Tables in MACRO-32

use of

performed does not need to be -

Notice

that before p-table mnemonics can be referenced, a pointer must be

declared (in this case called

macro and

being tested

Notice that the 'HPST' prefix fields expand only to addresses.
data fetches from these fields, explicit field references must

do

including the
(an RK611l in this case).

'PTABLE"'")
field declaration for the device type

using the $DS HPO_DECL

To

be made (as in the example for HPST TYPE).

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

+

.

REGIN
LOCAL
l.LOG_UNIT, ! Place to store log. unit ro.
BER_.LEVEL» ! Flace to store BR level
STATUS, ! Status return from service calls
CSR ¢ REF VECTOR [C» LONG1» ! Dlevice redister access
FTABRLE ! REF $DS_HFO_DECL ($DS_RK611_DIEF)$! Address of Ftable
EIND
NEV_NAM = UFLIT BYTE (ZASCIC’RK&611’)3j ! Ascii name of device
++

If the $0S_GFHARD call returns successfurlley do the Frocessind.,

!
! Get the address of the s-table for the next lodgical unit number.
1
!

LOG-UNIT = LLOG_UNIT + 13}

STATUS = $NS_GFHARD (UNIT=.LOG_UNIT, I Get Ftable
RETADR=FTARLE)

IF .STATUS EQL DS$_NORMAL

THEN
REGIN ! $0S_GFHARLD worked
IF (FTARLE CHPF$T_TYFEJ) NEQ .DEV_NAM I Vzlidate ture
OR +(FTAERLE CHF$T_TYFE] + 4)<0y 16> NEQ (DEV_NAM + 4)<0y 16
THEN
$IS_ARORT (ARG = TEST)3j ! Abort test if wrong device
BR_LEVEL = .FTAEBLE [HF$BE_RK&611_RR1% ! Get bus recuest level
CSR = .FTAELE CHF$A_DEVICE]; ! Get CSR rointer
END
ELSE
BEGIN ! $0S_GFHARDI returned error.
ENID
ENDS

Example 3-5 Referencing P-Tables in BLISS-32

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

(Note: This code is meant only to show an example of the use of
p—-table mnemonics. The function performed does not need to be
included in a real diagnostic program.)

3.2.5 Attaching From Within The Diagnostic Program

It may occasionally be necessary for a diagnostic program to
explicitly attach a device instead of depending on the program
user to issue an ATTACH command. For example, if the program Iis
going to access a file (see Section 3.15, File Management), the
device on which the file resides must be attached before it can be
referenced. In this case, the diagnostic program can issue the
$DS ATTACH macro. This macro serves exactly the same function as

the ATTACH command.

3.3 DIAGNOSTIC PROGRAM GLOBAL DATA STRUCTURES

The data structures described here are used to pass information
about the diagnostic program to the VDS.

3.3.1 Diagnostic Program Header

The diagnostic program header is a data block containing wvarious
types of information needed by the VDS, such as the program's
title and pointers to the various areas of the program that the
VDS must call during program execution.

The header is allocated by using the $DS HEADER macro. This macro
will be at the beginning of the program. It is the first (lowest)
area of memory allocated to the program. When the program is
loaded by the VDS, the header's first address will be location 200

(hex) .

Some header entries must be initialized at assembly time wusing
macro arguments. Other entries are filled in by the linker. The
diagnostic program should not alter or reference any header
entries during program execution.

3.3.2 Dispatch Table

The dispatch table is the means by which the VDS dispatches

program control to the various tests in the diagnostic program.
The table consists of a list of addresses of the tests.

The dispatch table is defined by the $DS DISPATCH macro. The
table's entries (test addresses) are generated when the diagnostic
program is linked.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.3.3 Program Sections Table

The program sections table contains character strings defining the
names of the ©program sections (see Section 3.8.3), as well as
pointers to the sections. The VDS uses this table when the user
specifies a section name with a RUN or START command, in order to
determine if the specified section exists and where it is located.

The program sections table is defined with the $DS_SECTION macro.

3.3.4 Device Mnemonics List

The device mnemonics list is the means by which the VDS determines
what types of devices the diagnostic program 1is capable of
testing. When a RUN or START command is issued by the user, the
VDS compares the device types in the device mnemonics list against
the types of the . SELECTed devices (see the vax
Diagnostic Supervisor User's Guide) to determine if there are any
SELECTed devices that the program can test. The 1list has two
kinds of entries. Entries can either be addresses of counted
ASCII strings or addresses of p-table descriptors.

For device types having p-table descriptors defined within the

VDS, the device mnemonics 1list entry will be the address of an
ASCIC string representing the device type (for example, RK@6,
T™03) .

For device types having p-table descriptors defined within the
diagnostic program, the device mnemonics list entry will be the
address of the device's p-table descriptor.

The device mnemonics 1list is <created and formatted by the
$DS_DEVTYP macro.

3.4 PROGRAM PASSES AND SUBPASSES

Most diagnostic programs contain several tests (see Section
3.8.1). It is common for a system-under-test to have several

units of the type of device being tested.

One complete execution of all selected tests on all selected units
is one program "pass."

One complete execution of all selected tests on one selected unit
is one "subpass."

For a diagnostic program employing serial testing (see Chapter 1),
each pass will consist of one or more subpasses.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

For a diagnostic program employing parallel testing (see Chapter
1), each pass will contain only one subpass, since all devices are
tested concurrently.

3.5 INITIALIZATION CODE

Prior to the execution of a group of tests on a particular device,
the diagnostic program generally must perform some initialization
functions. These functions 1include obtaining the address and
other needed <characteristics of the next unit to be tested,
creating a data path to the device, and initializing program
buffers and counters. These functions are placed in a portion of
the diagnostic program known as the "initialization code." This
code 1is delimited by the macros $DS BGNINIT and $DS_ENDINIT. The
VDS will dispatch control to this code at the beginning of each
program subpass, before calling any of the tests.

3.5.1 Format Of The Initialization Code

The format of the 1initialization code depends on whether the
diagnostic program performs serial testing or parallel testing of
the units (see Chapter 1). For serial testing, one unit will be
initialized each time the initialization code is executed. The
VDS will dispatch control to each selected test and then call the
initialization code again so that the next unit may be
initialized. For parallel testing, each execution of the
initialization <code should «cause all wunits to be initialized.
When the VDS calls the tests, all units will be tested at once.
(Note that the VDS itself does not operate any differently when
parallel testing is occurring instead of serial testing. The
initialization code determines the type of testing to be performed
by initializing only one device at a time for serial testing, or
all devices at once for parallel testing.)

3.5.2 Services Used By The Initialization Code

The $DS_GPHARD service is very important in the 1initialization
code. This macro will pass the address of a p-table to the
diagnostic program. The program will then wuse the device
parameters stored in the p-table to determine how to reference the
device. (P-tables are discussed in Section 3.2).

For level 3 (standalone mode) programs, initializing a unit
involves executing the $DS GPHARD macro to get a unit's p-table
address, and then executing the $DS_CHANNEL macro to initialize
the appropriate bus adapter. The $DS SETMAP macro may also be
used in the initialization code. (Both the $DS _CHANNEL and
$DS_SETMAP macros may also be used within the actual tests.)

- N

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

For level 2R (user mode) programs, unit initialization will
consist of executing the $DS _GPHARD macro to obtain the unit's
p-table address, followed by issuing the SASSIGN system service.
Device allocation (using the S$ALLOCATE system service) 1is
requested by the VDS if the p-table descriptor for the device
indicates that the device must be allocated (see Section 3.2.2).

3.5.3 Logical Units

The initialization code must be written to handle an unspecified
number of units, since the number of units will vary from system
to system. At run time, the VDS determines the number of units
that can be tested by using the list of SELECTed units (see the
VAX Diagnostic Supervisor User's Guide) and comparing it with the
list of device types testable by the diagnostic program (as
contained in the Device Mnemonics List - see Section 3.3.4). One
of the arguments to the $DS GPHARD macro is the "logical unit
number." If this value is greater than the actual number of
testable units, the VDS will return from the $DS_GPHARD service
routine with an error status. Thus the initialization code can
contain a REPEAT-UNTIL loop that executes the $DS_GPHARD macro and
increments the logical unit number until the macro's return status
value indicates the error.

It is important to note that the "logical unit number" argument to
the $DS _GPHARD macro does not refer to the actual unit number of a
hardware configuration. For example, consider a program that
tests disks. Suppose this program is run on a system that has two
controllers, each possessing one drive. Each of these drives
could be wunit @ on its respective controller. The logical unit
number associated with the unit would depend on the order in which
the drives were attached. Once the SDS _GPHARD service has been
executed, the p-table for the logical unit number can be examined
(specifically, field HPSB DRIVE) to determine which unit has been
associated with the logical unit number.

3.5.4 Program Passes And The Initialization Code

When $DS GPHARD returns an error status, indicating the highest
numbered 1logical wunit has been tested, the initialization code
must signal the VDS that one program pass has been completed. The
$DS_ENDPASS macro is used for this purpose. This macro will call
a VDS service that will update the count of passes executed and
check to see 1if the number of passes requested by the user has
been executed. If so, the program's summary routine (see Section
3.7) and cleanup code (see Section 3.6) will be executed, and the
VDS command line interpreter will be called. Otherwise program
control is returned to the diagnostic program's initialization
code, which can reset the logical unit number to zero so that a
new program pass can begin.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Two other macros useful in the initialization code are $DS_BPASSO
and $DS_BNPASS@. These macros are used to cause program branching
depending on whether or not the first program pass is being
executed. It is often necessary to perform special initialization
the first time the initialization code is executed. For example,
the location containing the number of the next logical unit to be

tested must be initialized the first time through the code.
Another example of a function that should only be performed the

first time the initialization code is executed is "yolume
verification" (see Section 5.6.2). These macros are discussed 1in
Section 3.11, Conditional and Unconditional Branching.

3.5.5 Initialization Code Examples

The following are examples of program steps needed in
initialization code.

Initialization Code for Serial Testing:

IF PASS ¢
THEN
BEGIN
! Program initialization
ALLOCATE BUFFERS ’
LOGICAL UNIT NUMBER=0
END - -
ELSE
INCREMENT LOGICAL_UNIT_NUMBER
IF ALL UNITS DONE
THEN
BEGIN
! End of pass
CALL $DS ENDPASS
LOGICAL UNIT NUMBER=0
END - -
! Per—-pass code
CALL $DS_GPHARD
ASSIGN CHANNEL
CLEAR BUFFERS
CLEAR COUNTERS

.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Initialization Code for Parallel Testing:

IF PASS ¢

THEN
BEGIN
! Program initialization
ALLOCATE BUFFERS

END
ELSE

BEGIN

! End of pass

CALL $DS ENDPASS

END -
LOGICAL UNIT NUMBER=@
REPEAT -

$DS GPHARD

ASSTGN CHANNEL

INCREMENT LOGICAL_UNIT_NUMBER
UNTIL ALL UNITS DONE
CLEAR BUFFERS
CLEAR COUNTERS

3.6 CLEANUP CODE

When all testing of a device has been completed, there must be a

means for guaranteeing that the device 1is 1left in
initialized, static state. The "cleanup code" is ©prov

this purpose. This code resides 1in the diagnostic
delimited by the macros $DS_BGNCLEAN and $DS_ENDCLEAN.

The cleanup code will be executed under the
circumstances.

e The last program pass has been completed.

e The diagnostic program executes the $DS ABORT mac

a known,
ided for
program,

following

ro. This

macro should be used when a catastrophic failure is

detected by the program.
e The user issues the VDS's ABORT command.
® An exception condition occurs and is handled by

last chance condition handler (see Section
Condition Handling).

the VDS
3.14.5,

e The program is aborted because a $DS_ASKxXXX macro was
executed with no user present and no default response (see

Chapter 4).

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Cleanup code should perform the following functions.

Disable all device and adapter interrupts.
Deassign channels, 1f in user mode.
Deallocate memory buffers.

Cancel timers.

3.7 SUMMARY ROUTINE

The "summary routine" is an optional portion of the diagnostic
program. If included, it is used to display on the user's
terminal a summary of the program's execution history. Summary
routines are most likely to be included in programs that perform
many repetitive functions and/or have long execution times, since
these program are 1likely to compile 1large error counts. The
summary routine will be called by the VDS at the end of the 1last
program pass (unless the user has inhibited the display with the
IES flag; see the VAX Diagnostic Supervisor User's Guide).
Additionally, the routine will be executed when the user issues
the SUMMARY command (see the User's Guide).

When the SUMMARY command is issued, the VDS provides a generalized
summary message whether or not the diagnostic program includes a
summary routine. This message indicates the program name and the
number of errors that were reported (Section 3.9 discusses error
reporting). An example of the message is as follows:

Summary of EVRAD - LEVEL 2 DISK FUNCTIONAL TESTs Rev 1.1
1 srodgrazm detected error (1 Hard, 0 Softy 0 Sustemr 0 Devicel.
{0 Surervisor detected errors.

If a summary routine is included in the diagnostic program, the
message dgenerated by that routine 1is displayed with the above
message.

The summary routine 1is delimited by the $DS_BGNSUMMARY and
$DS_ENDSUMMARY macros. All messages displayed with the summary
routine must be printed by using the $SDS_PRINTS macro.

Typically, the routine will contain code to display such runtime
statistics as the total numbers of read transfers, write
transfers, read errors, and write errors that have been detected
on each unit being tested. Any other information relevant to the
type of device being tested may also be displayed. A separate set
of totals must be kept for each unit. It is useful to store these
sets of totals in one 1large data area within the program,
delimited by the $DS_BGNSTAT and $DS_ENDSTAT macros.

3-28

TN

TN
7 1

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.8 TESTS, SUBTESTS, AND SECTIONS
3.8.1 Tests

All diagnostic programs contain one or more (usually several)
"tests." A test consists of code that examines a portion of the
UUT. If the diagnostic program is a logic test (see Chapter 1),
each test should be designed to check a subset of the UUT's logic.
If the program is a function test (see Chapter 1), then each test
will <check a subset of the total functionality of the device.
Specific design, content, and number of tests are the program
designer's decision of what 1is appropriate for a particular
device.

Each test must be free-standing. That is, proper execution of a
test must not depend on the previous execution of any other test.
Thus, any group of tests must be executable in all possible
combinations and sequences.

If several tests require a common segment of code, this common
segqment may be made 1into a global routine called by each test.
Global routines should be placed 1in a separate area of the
diagnostic program, outside the boundaries of any particular test.

Each test is delimited by the $DS_BGNTEST and $DS_ENDTEST macros.

Sometimes it may be desirable to execute the same test repeatedly,
but using a different set of input arguments each time. This may
be accomplished by grouping the various sets of input arguments
together and delimiting them with the $DS BGNDATA and $DS_ENDDATA
macros. When this is done, the VDS will automatically execute the
code within the test once for every set of arguments specified
before going on to the next test. From the user's point of view,
this repeated execution of the code within the test will appear to
be one execution of the test.

3.8.2 Subtests

Tests should be composed of one or more of "subtests." A subtest
is a small section of <code that performs one function. Each
subtest must be delimited by the $DS BGNSUB and $DS ENDSUB macros.
The $DS_BGNSUB macro automatically assigns a number to each
subtest. Subtests are numbered from 1 to N for each test, where N
is the total number of subtests within the test. Subtests cannot
be nested. It is not legal to branch from one subtest to another
using GOTO-type instructions. Subtests may be either executed
sequentially or called from a higher-level routine. Figure 3-5
illustrates legal and illegal program flow using subtests.

3-29

ge-¢

LEGAL

$DS_BGNTEST
control
routine
$DS_ENDTEST

$DS_BGNSUB
sub
#1

$DS_END SUB

$DS_BGNSUB $DS_BGNSUB
sub sub
#2 #3

$DS_ENDSUB $DS_ENDSUB

LEGAL

$DS_BGNTEST
$DS_BGNSUB

.
$DS_ENDSUB
$D§_BGNSUB

.

.
$DS_ENDSUB

$DS_BGNSUB

XX XX}

$DS_ENDSUB
$DS_ENDTEST

ILLEGAL ILLEGAL
$DS_BGNTEST $DS_BGNTEST
$DS_BGNSUB $DS_BGNSUB
L]

L]
$DS_BGNSUB

.
GOTO LABEL1
L)

$DS_ENDSUB
$DS_ENDSUB .

$DS_BGNSUB .
L] L]
. $DS_ENDSUB
L]
: $DS_ENDSUB
LABEL1: o
o
$DS_ENDSUB

$DS_ENDTEST

TK-10520

Figure 3-5 Legal and Illegal Usage of Subtests

WY4O0ud OILSONOVIA ¥OSIAYIANS XVA ¥ 40 JYNLONYLS HHL

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

If several tests require the use of the same subtest, the code
within the subtest (NOT including the $DS_BGNSUB and $DS_ENDSUB
macros) can be placed in a global subroutine placed in a separate
area of the diagnostic program, outside any particular test. Then
each subtest requiring the code can call the subroutine.

Subtests are useful for the following reasons:

e They define 1loop boundaries for the loop-on-error
facility. Refer to Section 3.10, Looping, for a
discussion of loop boundaries and looping on errors.

e They provide a means by which the program user can execute
a small portion of a test. The user can use the VDS
command language to cause the diagnostic program to be
executed up to and including a particular subtest, with
the option of 1looping on the subtest. Refer to the
VAX Diagnostic Supervisor User's Guide.

3.8.3 Sections

A "section" is a group of tests. Sections are defined for the
convenience of the program user. If the user specifies that a
certain section of the program is to be executed, all the tests
assigned to that section are automatically run. This frees the
user of needing to specify a long string of test numbers manually.

The programmer should assign to a section groups of tests
performing similar functions. The number, names, and purposes of
a particular program's sections are the programmer's option, but
the program should consider which groups of tests a user might
wish to run as a set and create a section for that set. A test
may belong to any number of sections.

Sections are defined by wusing the $DS SECTION and $DS_SECDEF

macros, and by including the section name(s) as arguments—to the
$DS_BGNTEST macro. These macros indicate to the VDS which tests
should be associated with which sections.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Every program has a default section called DEFAULT. The contents
of this section depend on the particular program application and
are generally specified by the program's user community. However,
no . test within the default section can require any sort of manual
intervention, such as altering switch positions, adding cables,
and so on. The default section MAY ask for keyboard responses
using the $DS ASKxxxx macros (see Section 3.12.2.2, Prompting the
User), but all $DS_ASKxxxx macros included in the default section
MUST provide default responses. This will ensure that the default
section will -execute to completion if the VDS control flag
OPERATOR is clear, indicating that no operator (user) is present.

If any tests in the diagnostic program require manual
intervention, these tests must be grouped together in one section.
This section should be called MANUAL. The manual section MUST
test for the presence of an operator by using the $DS BOPER or
$DS_BNOPER macro (see Section 3.11, Conditional and Unconditional
Branching). If an operator 1is not present, each test in this
section must use the $DS_ABORT macro.

3.9 REPORTING ERRORS

The VDS provides extensive capabilities, via macro calls, for
reporting detected error conditions. All error conditions MUST be
reported by using the VDS macro calls. Error macros have the
format $SDS_ERRxxxx, as indicated later in this section.

3.9.1 Error Message Formats

The macros call VDS services that will cause error messages to be
displayed on the user's terminal. Error messages are divided into
three sections, or "levels." This is so users can use VDS control
flags to select or 1inhibit the display of all or part of a
message, as discussed in Section 3.9.2.

The first level is referred to as the "message header." Part of
this header 1is generated automatically by the VDS and identifies
the current test, subtest, unit, and error. The rest of the

header consists of a message specified by the programmer as an
argument to the $DS _ERRxxxx macro. This last part of the message
is a short statement identifying the type of error.

The second level is provided by the programmer via the $DS_PRINTB

macro. This 1level 1is used to provide a clear statement of what
the error is. For example, if a particular register's contents
are tested and found to be not as expected, this level would be

used to display the expected and actual contents of the register.

3-32

s

TN

-

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The third level, also provided by the programmer (this time by
using the $DS_PRINTX macro), can be a detailed error description,
including such variable data as device register dumps and buffers
of send vs. received data patterns. This 1level is used for
dumping out large amounts of auxiliary information.

The $DS PRINTB and $DS PRINTX macros that are used to generate the
second and third message 1levels are contained in a subroutine
referred to as an "error reporting routine." When the address of
an error reporting routine 1is passed to an error macro
($DS_ERRxxxx), the VDS will cause the routine to be executed after
the message header (first level) has been displayed.

Details on specifying error messages are given in the description
of the individual error macros ($SDS_ERRxxxx) in Chapter 4.

Example 3-6 shows a typical error message. In this example, the
first three lines comprise the message header. The second half of
the third line was specified by the programmer; the rest of the
header (plus the 1last line of the message) was generated by the
VDS. The remaining portions of the message were generated by an
error reporting routine. In this example, only the $DS_PRINTB
macro would be used within the error reporting routine.

KKKKKkXkKk ECKAX - VAX 11/750-srecific CFU Cluster Exerciser - 4.0 XXXXKKXX
Fass 1» test 8y subtest 2y error 2y 4-MAR-1983 09:04:130.04
Hard error while testing KAO! Attemrting to initialize TUS8 controller.

Incorrect number of butes received.

EXFECTEDN: CONTINUE flag = 1
Unrecodgnizable racket received.
ACTUALS 000000922(X) butes bedinning at 0000RAOO

XXXXkXkXkXX End of hard error number 2 XXKXKXKXXX

Example 3-6 Sample Error Message

Example 3-7 illustrates an error message in which both $DSPRINTB
and $DS_PRINTX macros should be used. The first line following
the three-line header should be displayed using $DS_PRINTB. The
last part of the message displays the parameters of a $QIO
service. Since this is a fairly 1long 1list of auxiliary
information, it belongs to the third message level and hence
should be displayed using $DS_PRINTX.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

ddkdockk EVYESE - UAX Bus Interzetion Prosram - 5.1 kkek¥x
F % 1y subrtest 1. erroar S5 $-HMAY-R3F 14155129.14
Juwstem Totzl error while testing TTG1Y ERROR ON QIO COMFLETIONM

ERROR ATTEWMFTING TO WRITE TO TTGL:

GI0 COMPLETIGN STATUS WaAS! NOFRIV
~TTG1 QIO RLOCEKE PARAMETERS WERE:!

PBIO_EFH: 00000020 (X) i EVENT FLAG #

QIC.CHAEN!D 00006050(Y) i QIO CHANMEL #
QIDFUHECT 00000008 (X) i TO$_WRITEFELK FUNCTION
GIO.I0SR: 0004ESE8(X) i TOSE ADDRESS

0L ASTADRS D0001I0ET(X) i ADDRESS OF AST
BTN ASTRRM? OD04ESDO(E) § ValUE OF AST FARAMETER
I0.EL? GOD0ACTIOY) i Pl ARG VALUE
RID_F2: GOG00005 (%) i P2 ARG VALUE
QID.F33 POCO0000(X) } F3X ARG VALUE
BI0-FAY GON00000(Y) P F4 ARD VALUE
B0 DODO0000 (¥ i FS ARG VALUE
RIO.FA? COGAERAQ LX) i Pa ARG VALUE

REEER¥ Frd of device fatsl error number 5 XKEdEEy

Example 3-7 Sample Error Message

3.9.2 VDS Control Flags Associated With Error Reporting

Several VDS control flags are associated with error reporting.
These flags are 1IE1, 1IE2, 1IE2, HALT, and LOOP. (See the
VAX Diagnostic Supervisor User's Guide for a complete discussion
of VDS control flags.)

The IE1, IE2, and IE3 flags control error message displays. If
the user sets the IE3 flag, message level 3 is not displayed. If
the IE2 flag is set, messages levels 2 and 3 are not displayed.
Setting the 1IE3 flag will inhibit displaying of the entire error
message.

If the user has set the VDS control flag HALT to activate
halt-on-error, the VDS will stop execution of the diagnostic
program after the error message has been printed. If the VDS
control flag LOOP has been set, the VDS will begin executing a
program loop after the error message has been executed (see
Section 3.10, Looping).

3

34

7 N

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.9.3 Error Types

Error conditions are divided into five classes, depending on their
severity. A macro 1is ©provided for each class. The five error
classes are "preparation errors," "soft errors," "hard errors,"
"device-fatal errors," and "system-fatal errors."

3.9.3.1 Preparation Errors - Preparation errors are not hardware
faults. They refer to the case in which the program user has not
properly "prepared" the UUT for testing. For example, a
particular diagnostic program may require that a disk drive be
write—-enabled by the user. If the program finds that the user has
not write-enabled the drive, it can declare a preparation error.
The program could then run only those tests that do not require
writing to the UUT, or it could skip the unit altogether.

Preparation errors are declared by using the $DS ERRPREP macro.

This macro may be issued from any point within the diagnostic
pProgram except the cleanup code.

3.9.3.2 Soft Errors - A soft error is one that potentially can be
recovered from. That is, it is an error which may go away if the
operation that detected the error 1is repeated. In an operating
system this type of error probably would not even be reported to
the user, but in a diagnostic program it is important to flag all
errors whether or not they can be recovered from so that the
operation can be completed. An example of a soft error might be
the occurrence of a write-check error when writing data to a
medium. (It may be the medium that is bad, and not the device.)
When a soft error is detected by the diagnostic program, the error
should be reported and the operation reexecuted. However, there
is generally a maximum number of retries that should be allowed.
If the maximum is reached, a hard error (see below) should then be
declared.

The macro to use when reporting a soft error is $SDS_ERRSOFT. This
macro can only be issued from within tests (see Section 3.8.1).

3.9.3.3 Hard Errors - A hard error 1is one that cannot be
recovered from. That 1is, 1t 1is an error so serious that the
operation being performed cannot be completed. Such an error
might be a disk seek error. A hard error should also be declared
if an operation detected a soft error and the operation was
retried unsuccessfully several times. If, for example, a routine
performing write operations on a disk detected several write-check
errors (which are soft errors), then a hard error should be
declared.

3-35

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Hard errors are reported by using the $DS_ERRHARD macro. This
macro can only be issued from within tests (see Section 3.8.1).

3.9.3.4 Device-Fatal Errors - Sometimes a diagnostic program
detects so many hard errors on a UUT that it is pointless to

continue testing the device. Perhaps there 1is something so
seriously wrong with the device that it cannot be tested at all.
Or maybe an attempt has been made to test a nonexistent unit. In

any of these <cases it is appropriate to declare a device-fatal
error, which indicates to the user that the program intends to
stop attempting to test the UUT in question. Whenever a
device-fatal error is declared in a program performing serial
testing, the program should leave the current test (by issuing the
$DS_EXIT macro). Additionally, an internal flag could be set to
indicate that a fatal error has been declared. Each test could
check this flag and, if set, immediately issue the $DS_EXIT macro.
That way no more testing would be performed on the unit (for this
pass). The initialization code would reset the flag to allow
testing of the next unit.

The macro for declaring device-fatal errors is $DS_ERRDEV. This
macro may be issued from anywhere within a diagnostic program
except the cleanup code.

3.9.3.5 System-Fatal Errors - A system-fatal error 1is one so
serious that the diagnostic program cannot be executed at all. 1In
user mode, for example, a system—-fatal error should be declared if
the wuser's process does not possess VMS privileges necessary to
perform functions required by the diagnostic program (such as
PHYSIO for a program that uses physical I/O0 -- refer to the
VAX/VMS System Services Reference Manual.) Any time a system-fatal
error 1s declared, the diagnostic program should subsequently
execute the $DS_ABORT macro to abort program execution.

The macro for system-fatal errors is $DS ERRSYS. This macro may
be issued from anywhere within a diagnostic program except the
cleanup code.

3.18 LOOPING

The VDS facility that 1is probably the most wuseful to repair
technicians 1is program 1looping. Program 1loops, often called
"scope loops," because they aid the technician in tracing signals
with an oscilloscope, are enabled when the technician sets the VDS
control flag LOOP (see the VAX Diagnostic Supervisor User's

Guide). Once this flag has been set, a loop will begin executing
any time an error macro ($DS_ERRxxxx) is issued.

.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.10.1 Defining Loop Boundaries

Although actual execution of program loops is initiated
automatically by the VDS, it 1is the responsibility of the
programmer to define the boundaries of the loops.

Each loop will have a lower bound and an upper bound. Within
these bounds will be at least one error macro. Whenever an error
macro is serviced with the LOOP flag set, the VDS begins execution
of the loop. Loop execution proceeds in the following sequence.

l. After servicing the error macro call, the VDS returns
program control to the diagnostic program, to the point
directly after the error call.

2. The diagnostic program continues execution until the
loop's upper bound is reached.

3. From the upper bounf, the VDS causes program control to
branch to the loop's lower bound.

4. Execution of the diagnostic program continues until the
upper bound is again reached, whether or not the error
macro is again issued.

5. The cycle is repeated.

Note that once the cycle is started, through the execution of an
error macro, the macro may or may not be executed on subsequent
passes through the loop. This means that the loop will continue

to execute even if the error condition disappears. In fact, once
a program loop has been initiated, it will continue to execute
perpetually until a control-C is typed on the user's terminal.

Loop boundaries may be defined explicitly by the programmer. If
they are not, then default values will be used. For a test that
does not contain subtests, the default lower bound and upper bound
for loops in that test are the $DS_BGNTEST and $DS_ENDTEST macros,
respectively. For tests containing subtests, the default lower
and upper bounds are, respectively, the $DS BGNSUB and $DS_ENDSUB
macros of the subtest containing the error macro that was executed
to report the error condition.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The programmer can explicitly define loop boundaries by using the
$DS _CKLOOP macro. This macro is placed after an error macro, but
before the next $DS_ENDSUB or $DS ENDTEST. If the the $DS CKLOOP
macro is contained within a test that consists of subtests, it
must be placed within the bounds of a subtest. The macro takes as
an argument the name of a program label. This label must be
located before the error macro, but after the most recent
$DS_BGNSUB or $DS_BGNTEST. The result is a loop whose lower bound
is the label and whose upper bound is the $DS CKLOOP macro itself.

Figure 3-6 illustrates the various loop boundaries.

$DS_BGNTEST h $DS_BGNTEST $DS_BGNTEST
$DS_BGNSUB $DS_BGNSUB
$DS_ENDSUB $DS_ENDSUB
$DS_BGNSUB | $DS_BGNSUB
$DS_ERRxxxx >LOOP $DS_ERRxxxx label:
$ LooP $DS_ERRxxxx LOOP
$DS_CKLOOP label
$DS_ENDSUB $DS_ENSUB
$DS_ENDTEST J $DS_ENDTEST $DS_ENDTEST

TK-10521

Figure 3-6 Examples of Loop Boundaries

3.10.2 Characteristics Of Loops

Loops should be small. Each loop should generate a minimum amount
of electrical activity on the UUT. The less activity that is
occurring, the easier it will be for the technician to trace
relevant signals.

Loops must be made up of code that is repeatable. There 1s no
point in creating a program loop unless the code within that loop
can be executed repeatedly. The code must cause the same
electrical activity to occur each time it 1is executed. For
example, a loop that just sets a bit is useless, because the bit
will be set the first time through the loop, and subsequent passes
through the loop will cause no changes to take place. A loop that
sets and then clears the bit would be appropriate.

3-38

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

In order to make a loop's code repeatable, it may occasionally be
necessary to alter the program flow within the loop after the
first pass through the loop. The $DS_INLOOP macro can be used to
determine if a loop is being executed. Branching within the loop
can be performed depending on the return status from this macro.
This macro is wuseful in places where severe errors occur.
Ordinarily the programmer may want to abort the program (using the
$DS_ABORT macro) in such a case. However, if a loop is present,
it may be desirable to branch around the $DS_ABORT macro to allow
the loop to continue.

Caution should be practiced when branching within subtests
containing $DS _CKLOOP macros. It is important not to branch past
the $DS_CKLOOP macro, or the loop could be broken. For example,
suppose a loop is being executed, with a $DS_CKLOOP macro as the
loop's upper bound. Suppose now that a section of code within the
loop tests for a hard error condition and then branches around a
$DS_ERRHARD macro if the error does not exist. If the branch goes
past the $DS CKLOOP macro, the loop will be broken. Illustrations
of proper and improper branching within loops are shown in Figure
3-7.

PROPER BRANCHING IMPROPER BRANCHING
WITHIN A LOOP WITHIN A LOOP
label1: label 1:
L] L]
L] []
L] L]
. (]
TSTL ERRBITS TSTL ERRBITS
BNEQ NO_ERROR BNEQ NO_ERROR
L] L
. .
NO_ERROR: $DS_CKLOOP LABEL1
$DS_CKLOOP LABEL1 .
NO_ERROR

TK-10522

Figure 3-7 Proper and Improper Branching Within Loops

3.19.3 Nesting Loops

Loops whose boundaries are defined with the $DS CKLOOP macro may
be nested. Figure 3-17 illustrates nesting of loops. In Example
A of Figure 3-8, loop 2 and loop 3 are contained in 1loop 1. In
Example B, loop 3 1is contained within 1loop 2, and loop 2 is
contained within loop 1.

3-39

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

EXAMPLE A EXAMPLE B
LABEL1: h LABEL1: h
LABEL2: LABEL2: h
error macro 2 LOOP 2 LABELS3:
$DS_CKLOOP LABEL2
>LOOP 1 . LOOP 3
LABEL3: error macro LOOP 2
error macro 3 LOOP 3 $DS_CKLOOP LABEL3 >LOOP 1
$DS_CKLOOP LABEL3
error macro 1 - error macro 2
$DS_CKLOOP LABEL1 J $DS_CKLOOP LABEL2 J
error macro 1
$DS_CKLOOP LABEL1 J

TK-10523

Figure 3-8 Nesting Loops

When loops are nested, the VDS always executes the smallest 1loop
containing the issued error macro. If error macro 2 was issued in
Example B, loop 2 would be executed.

The VDS will always execute the loop containing the most recently
issued error macro. In Example A, suppose error macro 1 was
issued. This would cause loop 1 to begin executing. Suppose at a
later point in time that error macro 2 was executed for the first
time (perhaps because of an intermittent hardware failure). Then
loop 2 would begin execution and loop 1 would be forgotten.

3.10.4 User-Specified Looping

There is a method by which the user can request a 1loop to be
executed even though an error macro has not been issued. The
/SUBTEST qualifier on the RUN and START commands (see the
VAX Diagnostic Supervisor User's Guide) can be used to specify a
subtest on which the user wishes 1looping to occur. When the
specified subtest is reached, looping begins on that subtest. The
programmer should keep this feature in mind as subtests are
designed.

3-490

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.11 CONDITIONAL AND UNCONDITIONAL BRANCHING

The VDS provides several macros to facilitate conditional
branching within the diagnostic program.

$DS_BERROR, $DS_BNERROR

The "branch if error" and "branch if no error" macros can be
used 1immediately after macros that call system services. The
services will return a status indication (in R@), and these
macros cue on that status. The macros accept as an argument
the address to which the program should branch.

$DS_BCOMPLETE, $DS_BNCOMPLETE

The "branch if complete" and "branch if incomplete™ macros are
also used 1immediately following macros that call system
services. Their function 1is the 1inverse of that of the
$DS BERROR and $DS_BNERROR macros. That is, $DS_BCOMPLETE is
equivalent to $DS_BNERROR and $DS_BNCOMPLETE is the same as
$DS_BERROR. Choosing one set of macros over the other is
simply a matter of "readability" in the source code. For some
system services it makes more sense to branch if the service
"completed successfully," while for others it is more
appropriate to branch if there was "no error."

$DS_BOPER, $DS_BNOPER

The "branch if operator present" and "branch if operator not
present" macros can be used anywhere 1in the diagnostic
program. They cue on the setting of the OPERATOR flag (see
the VAX Diagnostic Supervisor User's Guide). They make it
possible to execute or skip certain segments of code,
depending on whether a user is or is not present.

$DS_BQUICK, $DS_BNQUICK

The "branch if QUICK flag set" and "branch if QUICK flag not
set" macros can be used anywhere in the diagnostic program.
They cue on the setting of the QUICK flag (see the User's
Guide) . These macros allow you to create a "quick mode" in
your program. This mode is selected optionally if the |user
sets the QUICK flag.

Quick mode provides a fast program pass that does not perform
thorough testing and is used when the user is more interested
in a fast run time than in careful, complete fault detection.
The macros can be used to skip around segments of code in
quick mode. Determination of what segments of code should be
included or excluded in quick mode depends on specific program
requirements.

3-41

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

$DS_BPASS@, S$DS _BNPASS#

The "branch if pass 0" and "branch if not pass #" macros can
be used when it is necessary to cause program flow to change
depending on whether or not the current program pass 1is the
first one. The macros call a system service that returns a
status indication (in R@O) of whether or not the <current pass
is the first one, then an appropriate branch is generated.
These macros are only to be used in the program's
initialization code.

$DS_ESCAPE

The S$DS_ESCAPE macro is used to exit from a test or subtest if
an error has been detected within that test or subtest. It is
used when it is pointless to execute the rest of the code
within the test or subtest after the error was detected. For
example, there is no point in executing write tests on a disk
if it has been discovered that the disk is write-protected and
a user 1is not present.

If an error reporting macro ($DS_ERRxxxx) has been issued from
within the current subtest or test, then issuing an $DS_ESCAPE
macro will cause program control to pass to the end of the
subtest or test.

$DS_EXIT

The $DS_EXIT macro provides for unconditional branching to the
end of a test, a subtest, an interrupt service routine, or the

summary routine. This macro is often used in conjunction with
the conditional branching macros, as in the following example:

$DS_BGNTEST

$DS_BOPER 10§
$DS_EXIT TEST
10$: :

'$DS_ENDTEST

N

—

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.12

3. 12. l
3.12.1.1

INPUT/OUTPUT

I/0 With The Unit Under Test

I/0 in User Mode - In user mode (level 2R programs), all

input/output operations must be accomplished by using the VMS $QIO
system service. The details of performing I/0 operations with the

$QIO0

service are described in the VAX/VMS I/0 User's Guide, which

MUST be read before development of a level 2R program is begun.

Initiating I/0 activity in user mode is a process involving three
steps, each of which requires use of a VMS system service.

Assigning a channel to the device.

A device cannot be referenced unless a channel linking the
device to the program has been "assigned" to the user. A
"channel" is a data path 1linking the device to the
diagnostic program.

Channel assignments are accomplished by using the $ASSIGN
system service. This service request should be issued
from the diagnostic program's initialization code.

When the diagnostic program has finished using the device,
its channel should be deassigned by using the $DASSGN
system service. This service should be requested in the
program's cleanup code.

Allocating the device.

If the diagnostic program will need exclusive use of the
device to Dbe tested (no other users allowed to reference
the device while it is being tested), then the device must
be "allocated" to the diagnostic program. Allocation is
necessary if the program requires that a scratch medium be
placed in the UUT. 1If the program can use the currently
loaded (nonscratch) device medium 1in a nondesructive
manner, device allocation is not necessary.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Device allocation is not performed directly by the
diagnostic program. Instead, the allocation request is
issued by the VDS (via the $SALLOCATE system service) when
the user types the VDS SELECT command (see the
VAX Diagnostic Supervisor User's Guide). The VDS
determines whether or not to allocate the device by
checking the HP$M ALLOC bit in the device's p-table (see
Section 3.2.1, P-Table Format). If this bit is set (by
the program developer who created the p-table descriptor;
see Section 3.2.2, P-Table Descriptors), then the
SALLOCATE service is requested. If the device cannot be
allocated because it has already been allocated to someone
else, the VDS informs the user.

An allocated device will be deallocated (by the VDS

issuing a S$DEALLOCATE service request) when the device is
DESELECTed or when the VDS EXIT command is typed.

An instance when the diagnostic program might have to
specifically allocate and deallocate a device is in the
case of error logging. (We are not referring to VMS
system error logging.) If a level 2R program writes error
logging data to a device, it MAY be necessary to allocate
the device. In this case the diagnostic program should
use the SALLOCATE service of VMS within the initialization
code. The cleanup code will have to use the $DEALLOCATE
service to deallocate the device. Refer to the
VAX/VMS System Services Reference Manual.

Queueing I/O requests.

Actual input/output operations are requested by using the
$QI0 and S$QIOW system services, which will place the
request in an I/0 queue. These services require that a
set of parameters be passed to the service routine. These
parameters specify the following types of information.

- The channel number over which the data transfer is to
take ©place. The channel number is obtained from the
SASSIGN service.

- The type of transaction desired. This is indicated by
a "function code" and is discussed below under "I/O
Function Encoding."

- The method by which the program is to be notified that
the transaction has been completed. Three methods are
available and are discussed below under "Synchronizing
I/0 Completion.”

~ o

o

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Figure

Table 3-1

The address of a buffer to receive diagnostic
information. This buffer is discussed under "The $QIO
Diagnostic Buffer."

I/0 Function Encoding

I/0 functions fall into three groups, corresponding to
the three I/0 methods (physical, 1logical, and
virtual). The type of function to be used will depend

on the type of device being tested and the type of
diagnostic program being written (refer to Chapter 2).

The function that is to be performed by a $QIO service
is 1indicated by passing to the service routine a
16-bit value having the format illustrated in Figure
3_9-

15 6 5 0

FUNCTION FUNCTION
MODIFIER CODE

TK-10524

3-9 $QIO0 Function Code and Modifier Fields

The "function code" is a six-bit field indicating the
type of I/0 operation to be performed. Some function
codes are device-independent, and others are device-
dependent. Table 3-1 contains device-independent
function codes for read and write functions in the
three I/0 transfer modes.

Device-Independent Read and Write Functions

Physical I/0 Logical I/0 Virtual I/0

I0$ READPBLK IO$ READLBLK 105 READVBLK
IO$_WRITEPBLK IO$ WRITELBLK IO$ WRITEVBLK

Refer to the VAX/VMS I/O User's Guide for discussions
of the function codes available to individual devices.

3-45

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The "function modifier" field is used to modify the
operation specified by the function code. Bits within
this field can be set in conjunction with the function
code, and the $QIO0 service will alter the function to
be performed accordingly. For example, the
I0$ INHRETRY modifier can be used with an IOS_READVLBK
function to inhibit retries when read errors are
encountered.

Refer to the VAX/VMS I/0 User's Guide for a more
detailed dicussion of I/0O function encoding, along
with tables of all function codes and modifiers that
are valid for each device supported by VMS.

Synchronizing I/0 Completion

Three methods exist by which the diagnostic program
can determine that an I/O request has been completed.

The desired method of determination is indicated with
the $QI0 service call. The three methods available

are
a. Waiting for an event flag.

It is possible to specify, as an argument to the
$SQI0 or $QIOW macros, the number of an event flag
(see Section 3.14.2) that system service is to set
when I/0 has completed. The diagnostic program
can (by using a system service) wait for the
specified flag to be set. (The $QIOW service is a
combination of the $QIO0 and SWAITFR services.)

b. Testing an I/O status block.

The address of an "I/O status block" can be
specified -as an argument to the $QIO macro. When
this is done, the $QI0 service will cause the
first word of this block to be loaded with a
status code when the I/0 operation has been

completed. The ©program can test the contents of
the block to determine the status of the 1I/0
operation. The format of an I/O status block is

shown in Figure 3-10.

31 16 15 0

TRANSFER COUNT STATUS

DEVICE-DEPENDENT DATA

TK-10525

Figuré 3-1¢ 1I/0 Status Block Format

3-46

.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Refer to the VAX/VMS I/0 User's Guide for more
details about the contents of the 1I/0 status
block.

c. Execution of an AST routine.

It is possible to specify, as a $QIO argument, the
address of an AST routine. (ASTs —-- asynchronous
system traps -- are discussed in Section 3.14.3.)
If this is done, an AST will be delivered (and the
AST routine called) when the I/O operation has
been completed. This method of determining I/O
completion provides for the most asynchronous (and
most efficient, with regards to processor usage)
I/0 activity.

The $QIO Diagnostic Buffer

When a $QI0 or $QIOW macro is issued, it is possible
to request the system service routine to load a buffer
with the contents of the device's registers. This
"diagnostic Dbuffer" will be loaded if two conditions
are met:

a. The I/0 transfer method is physical (see Chapter

2) o
b. The process possesses the "diagnostic" VMS
privilege (see the VAX/VMS Command Language

User's Guide).

To request the system service to load the buffer, the

programmer must:

a. Define a buffer area within the diagnostic
program. This buffer must be 1large enough to
contain the contents of alil the device's

registers.

b. Specify the address of this buffer as the "P6"
argument to the $QIO or S$SQIOW macro (see Chapter
4).

When the I/0 operation has completed, the buffer will
contain the final contents of the device registers,
plus additional information. Generally (but not
always), the format of the buffer's contents will be
as indicated in Figure 3-11.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

31 0

OPERATION START TIME

IN 64-BIT FORMAT
OPERATION COMPLETION TIME
IN 64-BIT FORMAT

FINAL ERROR COUNTER CONTENTS

NUMBER OF DEVICE REGISTERS

A DEVICE REGISTERS, A

vT: ONE PER LONGWORD T

TK-10526

Figure 3-11 Typical $QIO Diagnostic Buffer Format

Two other VMS system services are useful to diagnostic
programmers. The S$GETCHN service will provide information about
the device attached to a specific channel. This information

consists of the "primary" and "secondary" device characteristics
as described in the VAX/VMS I/0 User's Guide. The $CANCEL system
service will cancel alIl pending I/0 requests on a specified
channel, including those already in progress.

3.12.1.2 I/0 in Standalone Mode - In standalone mode (level 3
programs), I/O is performed by direct reference of the device's
registers. Thus routines to set up a device's control registers,
service 1its interrupts, and check for error conditions must be
contained within the diagnostic program.

The diagnostic program must set up the bus adapters so that a data
channel can be created to transfer information across the buses.
Because of the differences inherent in the bus adapters of the
various VAX processor types, the VDS provides facilities for
channel initialization that remove from the diagnostic programmer
the burden of dealing with processor-specific details. This
allows diagnostic programs to be automatically compatible with all
VAX processor types. '

The $SDS CHANNEL and $DS SETMAP services of the VDS are wused to
create data channels in standalone mode. The $DS _CHANNEL service
is used to initialize the MASSBUS and UNIBUS adapters. Depending
on the parameters included with the $DS CHANNEL macro, the service
will

Initialize the adapter

Clear the adapter

Enable or disable interrupts
Provide current adapter status

.
// N

P

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Details are provided in the description of the $DS_CHANNEL macro
in Chapter 4.

The $DS SETMAP service will set up the adapter's mapping registers
so that data transfers will reference the desired areas of main
memory. Details are provided in the description of the $DS SETMAP
macro in Chapter 4.

The $SDS SHOCHAN service provides automatic display on the user's
terminal of a bus adapter's internal registers. The configuration
register and the status register are always displayed. If error
conditions exist, additional registers will also be displayed.
This macro should be used whenever the $DS_CHANNEL system service
detects an error condition.

Interrupt service routines in a diagnostic program should be
delimited by the $DS_BGNSERV and $DS_ENDSERV macros. The address
of the interrupt service routine is passed to the $DS_CHANNEL
service. The VDS has an interrupt preprocessor that initially
receives control when an interrupt occurs, and then dispatches
control to the specified interrupt service routine.

An interrupt service routine's function should be minimal, such as
disabling further interrupts, making sure that the interrupt was
expected (arrived through the proper vector), and saving device
status. Error reporting should NOT be carried out in an interrupt
service routine, with one exception; interrupt service routines
should report unexpected interrupts.

Typical program flow when using an interrupt service routine is as
follows.

Main-Line Code:

Clear and initialize channel.
Set up I/0 transfer.
Start watchdog timer.
Enable interrupts.
Clear done flag.
REPEAT
Test done flag.
UNTIL done flag set OR watchdog timer finishes.
IF done flag set
THEN cancel watchdog timer; report I/O status
ELSE report timeout error.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Interrupt Service Routine:

Disable interrupts.

IF unexpected interrupt (wrong vector)
THEN set error status

ELSE save device status.

Set done flag.

Return.

More information on interrupts can be found in the description of
the $DS CHANNEL service in the next chapter.

Other macros useful when performing I/O functions in standalone
mode are:

$DS_SETVEC - Sets the contents of a specified interrupt or
exception vector to a specified address. This macro is the
ONLY method by which the vectors may be 1loaded (do not
reference the SCB directly).

$DS_CLRVEC - Removes from a specified vector whatever contents
had been placed in it by a $DS _SETVEC macro, and replaces it
with the address of the VDS condition handler. This macro is

the ONLY method by which the vectors may be reset (do not
clear the SCB directly).

$DS INITSCB - Reinitializes the system control block (SCB),
which contains all of the interrupt and exception vectors, to
their standard (VDS-defined) wvalues. Useful if several
$DS_SETVEC macros have been used.

$DS_PROBE - Attempts to access an address to determine whether
or not hardware (either memory or an I/O device) is connected
to it.

$DS_SETIPL - Sets the processor's interrupt priority level
(IPL) to a specified value.

3.12.2 1I/0 With The User Terminal

All I/O between a diagnostic program and the user's terminal must
be accomplished via VDS macros. Macros are provided for:

@ Displaying messages consisting of simple ASCII strings or
a combination of ASCII strings and variable data

e Prompting the user for a response, and then receiving and
storing the response

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

o Displaying the contents of a register and assigning a
mnemonic to each bit

0 Determining the user's terminal type and characteristics

3.12.2.1 Displaying Message Strings - Message strings consisting
of a combination of ASCII strings and data variables are displayed
by means of the "print" macros. This set of macros has the
general form $DS_PRINTX. Specifically, there are four print
macros, known as SDS PRINTB, $DS PRINTX, $DS PRINTF, and
$DS_PRINTS. The $DS_PRINTB and $DS_PRINTX macros are only used to
print error messages, and are used in conjunction with the error
macros (SDS_ERRxxxx). The VDS control flags used to inhibit error
messages (see the VAX Diagnostic Supervisor User's Guide) are
keyed to the $DS_PRINTB and $DS_PRINTX macros. The $DS_PRINTF
macro is used when it 1is necessary to provide the wuser with
information unrelated to error reports. The $DS_PRINTS macro is
used for summaries (see Section 3.7, Summary Routines).

The print macros are used to print simple ASCII strings, such as
DEVICE IS WRITE LOCKED.

They can also be used to display the contents of data words or to
print a combination of ASCII strings and variable data, such as

EXPECTED: 1010101010101010 (B)

RECEIVED: 1011101010101019 (B)

XOR: gP01o00000000000 (B)
Using a print macro involves specifying the address of a "format
statement”" and a list of variables. Format statements indicate
the format in which the variables are to be printed. The method

used by the print macros to format messages is the same as the
SFAO system service provided by VMS. In fact, the SFAO service is
also provided by the VDS. This service will format, but not
print, a message. The print macros will both format and print the
desired message. It is also possible (and occasionally desirable)
to format a message with the SFAO service and then display it by
using one of the print macros.

Another macro useful for displaying information to the user Iis
SDS CVTREG. With this macro, you specify the address of a
register and the address of a string of mnemonics. The mnemonics
are the names assigned to the bits within the register. The macro
will read the register and produce a character string telling
which bits of the register are set. This string can then be
displayed using one of the print macros.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Details on the print macros are in Chapter 4. The S$FAO service is
discussed in Chapter 4 and in the VAX/VMS System Services
Reference Manual.

It is sometimes useful to know the type and characteristics of the
user terminal. For instance, you may want to format text displays
differently on a video terminal than on a hardcopy terminal. The
$DS_GETTERM service may be used to determine the user terminal's
type and characteristics.

3.12.2.2 Prompting the User - There are occasionally instances in

which it is necessary to solicit information from the user. A
common example is the case in which the program must, at a certain

point in its execution, ask the user to perform an action such as

connecting a cable and to then type a response indicating that the
action has taken place. Also, there may be circumstances under

which it is necessary to obtain information about the UUT other
than what 1is contained in the p-tables. (It is important,
however, to TRY to place all device-specific information in the
p—-tables so that it can be specified in ATTACH commands BEFORE the
diagnostic program is started.)

All solicitation of user responses during the diagnostic program's
execution must be made through the use of the $DS_ASKxxxx macros.
These macros allow the programmer to specify a prompting message,
the format in which the user's response is to be interpreted, and
a storage area into which the response should be placed.

Specifically, there are five $DS_ASKxxxx macros.

1. $DS_ASKADR - Prompt the wuser for an address within a
specified range and store the result.

2. $DS_ASKDATA - Prompt the user for a numeric value within a
specified range and store the result.

3. $DS_ASKVLD - Same as $DS_ASKDATA, except allows programmer
to specify storage 1location of result as a field (using
position and size) within a large bit structure.

4. $SDS ASKLGCL - Prompt the wuser for a "yes" or "no"
response, and store the result as one bit, set or cleared.

5. $DS_ASKSTR - Prompt the user for a character string and
store the result.

3-52

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The macros also allow the programmer to specify a default wvalue
for the response. If there is no user present (indicated by the
state of the VDS control flag OPERATOR, see the
VAX Diagnostic Supervisor User's Guide), the default value will
automatically be used. If no default value exists, the program
will be aborted.

Sometimes diagnostic programs require the user to specify run-time
options other than those that can be selected using the VDS
command language. In such cases, the $DS_ASKxxxx macros can be
used to prompt the wuser to indicate the required run-time
parameters. One method of accomplishing this is to ask a set of
questions that can be answered with "yes" or "no," such as

DO YOU WISH TO RUN OPTION X?
DO YOU WANT THE DEVICE TO RUN IN MODE Y?

The responses to these question could be converted to set or
cleared bits that the diagnostic program could test. This method
is fine if the total number of program options is small.

However, for a program with a large number of run-time options,
the program wuser might have to answer a large list of questions
every time the program is executed (assuming he or she did not
want to use the default wvalues for these questions). In such
cases, the programmer might want to just prompt the user once and
allow him or her to type a string of options, as

OPTIONS ARE OPTION X, OPTION Y, OPTION Z
(DEFAULT IS OPTION_X)
TYPE OPTIONS:

Allowing the user to type a list of the options wanted 1is more
convenient for the user, even though it is more difficult for the
programmer to check the strings typed to see if they are valid.

For a program having a very large set of run-time options it might
be beneficial for the programmer to create a command language. An
example might be

Commands:

OPTIONS - select options

MODES - select device modes
BEGIN - begin program execution
RESUME - continue after control-C

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The user would type the VDS RUN or START command to start the
diagnostic program's execution. In the program's initialization
code or perhaps within a particular test, the program executes
$DS ASKxxxx macros to prompt the user for command strings. The
program parses and executes each command. The BEGIN command (or
something similar) simply allows the VDS to <continue normal
dispatching of the diagnostic program. The RESUME command would
be useful if a control-C handler is defined within the diagnostic
program (see Section 3.14.6, Handling Control-Cs). The number and
types of commands defined would, of course, depend completely on
the particular diagnostic program being designed.

The VDS provides two macros to facilitate command parsing. The
$DS_CLI macro is used to define the desired command language. The
$DS_PARSE macro compares an input stream (obtained from the user
via a $DS ASKxxxx macro) against the command language defined with
a set of SDS_CLI macros and will either dispatch to the proper
action routines or inform the user if an illegal command has been
typed.

3.12.2.3 Displaying HELP Text - Chapter 5 discusses the creation
of HELP files, which are supplemental files containing
informational text that the user can read. It may sometimes be
desirable for the diagnostic program to fetch and display sections
of the HELP file. This can be accomplished by using the $DS HELP
macro. Read the section of Chapter 5 on HELP files, and then
refer to Chapter 4 for a description of the $DS HELP macro.

3.13 MEMORY MANAGEMENT AND ALLOCATION

Note: For a discussion of VAX memory management, see the VAX
Architecture Handbook.

The memory management hardware may not be directly referenced by
diagnostic programs running under the VDS.

3.13.1 Memory Management In User Mode

In user mode (level 2R programs), memory management hardware 1is
under the control of VMS and it is always turned on. All of the
VMS memory management system services are available for use by
diagnostic programs. See the VAX/VMS System Services

Reference Manual for the uses and restrictions applying to VMS
memory management services. Allocation of new memory space should

only be accomplished with the VDS $DS _GETBUF macro, as described
in Section 3.13.3.

3-54

S

e

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.13.2 Memory Management In Standalone Mode

In standalone mode (level 3 programs), the memory management
hardware may be turned on or ©off. Normally, it 1is off.
Diagnostic programs can turn on memory management with the
$DS_MMON macro. Once on, it can be turned back off with the
$DS MMOFF macro. All map register initialization is performed by
the VDS, outside the control of the diagnostic program. Turning
on memory management will not increase the diagnostic program's
virtual address space, since the VDS loads the mapping registers
so that there is a direct one to one correspondence between
virtual and physical addresses in P# memory space.

When memory management is enabled, the VDS sets the protection of
all pages to"user write." It is possible to change the protection
of any page or group of pages by using the $SETPRT macro.

In standalone mode, the memory management hardware can be turned
on and off by the user, via the SET MM ON and SET MM OFF commands.
These commands override the $DS MMON and $DS_MMOFF macros
contained within a dignostic program. Thus if a user has issued
the SET MM ON command, the diagnostic program cannot shut off
memory management with the $DS_MMOFF macro.

Some diagnostic programs may not be able to execute if the memory
management hardware is enabled. If this 1is the case, the
$DS MMOFF macro must be issued at the beginning of the program.
If the status return from this macro indicates that the operator
has turned on memory management then the program must abort itself
(with the $DS_ABORT macro), printing an appropriate error message
before doing so.

3.13.3 Memory Allocation

Many diagnostic programs need extra memory space for I/0 buffers
or other wuses. Additional memory space may be acquired by using
the $DS_GETBUF macro. Both user mode and standalone mode programs
should wuse this macro, since this method 1is the only way of
assuring that there will be no memory allocation conflicts between
the VDS and the diagnostic program.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

The VDS keeps track of all free memory. The $DS _GETBUF macro is
used to request the VDS to assign a certain number of pages to the
diagnostic program. The VDS will return the starting address of
the memory space it has assigned. (Space will be assigned as a
group of contiguous physical pages in standalone mode, and as a
group of contiguous virtual pages in user mode.) When a diagnostic
program is executing on a system possessing 512K bytes of physical
memory (the smallest memory size supported by the VDS), the
program is guaranteed access to at 1least 96K bytes of buffer
space.

Memory space is returned to the VDS's free memory pool by using
the $DS_RELBUF macro.

3.14 SYNCHRONOUS AND ASYNCHRONOUS EVENTS
3.14.1 Introduction

Synchronous events are those that occur within the normal
execution flow of a program. Waiting for a bit to become set or
creating a time delay are both examples of synchronous events.
Asynchronous events are those that happen outside the normal
execution flow. VAX exceptions are asynchronous, because they
cause the normal flow of a program to be changed (program control
is passed to the condition handler). Refer to the
VAX Architecture Handbook for a detailed discussion of VAX
exceptions.

Diagnostic programs often need to handle occurrences of
synchronous and asynchronous events. "Event flags" are useful for
synchronous processing of events. AST routines and condition

handlers are wused for asynchronous processing. There are both

synchronous and asynchronous methods available for handling
time-critical situations.

3.14.2 Event Flags

Event flags are flags that can be used by diagnostic programs to
indicate status information. Services are provided for setting,
clearing, and reading the flags. Additional services allow the
diagnostic program to wait for a flag or group of flags to be set
before proceeding with program execution. The services are called
via macros.

There are 64 event flags, numbered from @ to 63. The flags are
divided 1into two clusters, each containing 32 flags. Some event
flag macros require that the cluster be indicated.

3-56

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Event flag 0 is reserved for exclusive use by the VDS and 1is not
available to diagnostic programs.

Flags 1 through 23 can be set or cleared by the wuser wvia the
SET EVENT FLAGS and CLEAR EVENT FLAGS commands, which means they
can be used to implement wuser selection of optional program
features.

Flags 24 through 31 are used by VMS and hence cannot be used by
level 2R diagnostic programs. They are available, however, to
level 3 programs.

Flags 32 through 63 are available to all diagnostic ©programs.
Users cannot modify these flags.

In user mode (level 2R programs), event flags are maintained by
VMS. The event flag macros call service routines within VMS.
Event flags @ through 63 are referred to as "local event flags,"
since they can only be used internally by a single process.
Another set of event flags, numbered from 64 through 127, are
referred to as "common event flags" since they can be shared by
cooperating processes. The VMS system service $ASCEFC must be
used to associate common event flags with processes in order for
these flags to be shared. See the VAX/VMS System Service
Reference Manual for details.

In standalone mode (level 3), event flags are maintained by the
VDS, and the event flag macros call service routines within the
VvDS.

The following macros are wused in both 1level 2R and 1level 3
programs to reference event flags:

$SETEF - Sets specified event flags.

$CLREF - Clears specified event flags.

SREADEF - Read the current status of specified event flags.
SWAITFR - Wait for a specified event flag to become set.
SWFLAND - Wait for a group of event flags to become set.
SWFLOR - Wait for one of a group of event flags to become set.
$QIOW - Queue an I/O request and wait for a specified event

flag to become set (indicating I/0O completion). Equiv-
alent to $QIO0 followed by SWAITFR.

3-57

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

Additionally, the\SSETIMR (see Section 3.14.4, Timing) and $QIO
(see Section 3.12.1.1, I/0 in User Mode) macros can optionally
specify references to event flags.

3.14.3 Asynchronous System Traps (ASTs)

An asynchronous system trap (AST) is a method by which a routine
can be entered asynchronously, outside the normal program flow,
similar to a device interrupt. A routine that is entered via an
AST 1is referred to as an AST routine. The process by which
AST routines are dispatched is called AST delivery.

3.14.3.1 AST Delivery - Three macros, available to both level 2R
and level 3 diagnostic programs, allow the use of ASTs. These
macros are S$SETIMR, $QIO, $QIOW, and $DS_CNTRLC. Each of these
macros will accept as an argument the address of an AST routine.
In the case of the SSETIMR macro, the AST routine will be entered
when the specified amount of time has elapsed. For the $QIO and
SQIOW macros, the AST routine will be executed when the requested
I/0 operation has completed. If the $DS_CNTRLC macro is used, it
will cause an AST routine to be entered when the program user
types a control-C.

ASTs may be enabled or disabled with the S$SETAST macro. If ASTs
are disabled, ASTs will not be delivered and thus the AST routines
will not be executed.

If a diagnostic program is waiting for an event flag (see Section
3.14.2, Event Flags) or hibernating (see Section 3.14.4, Timing),
ASTs will still be delivered to it. After the AST routine has
been executed, the program will be returned to the state it was in
before the AST was delivered (unless, of course, the AST routine
itself set the desired flag or woke the program).

3.14.3.2 AST Routines - An AST routine is entered wvia a CALLG
instruction. Thus the routine must have an entry mask and must
return by using a RET instruction. It must save (by specifying
them in the entry mask) any registers it uses, other than R0 or
R1.

When an AST routine is entered, the AP points to an argument 1list
in the format illustrated by Figure 3-12. The register values in
the argument list are those saved when the main-line code was
interrupted on delivery of the AST. The AST parameter is a value
specified by the "AST parameter" argument of the S$SETIMR, $QIO, or
SQIOW macro used to request delivery of the AST. This argument
can be. used by the AST routine to determine who called it.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

31 87 0

0 5

AST PARAMETER

RO

R1

PC

PSL

TK-10527

Figure 3-12 Argument List Passed to an AST Routine

3.14.4 Timing

Facilities are provided for creating timing delays within a
diagnostic program. These facilities allow you to

e Specify a particular length of time you wish to wait
before proceeding

e Cause the diagnostic program to stop executing until an
expected event occurs

e Cause an asynchronous event to occur after a specified
length of time has passed

The timing facilities provided by the VDS take into account speed
differences among the various VAX process types. Therefore, all
diagnostic programs containing time-dependent operations MUST use
the VDS timing facilities when coding these operations, in order
to guarantee program compatability with all current and future
processor types.

The VDS timer services are accessed by macro calls. Some macros
can be used for both level 2R (user mode) and level 3 (standalone)

programs, while others may only be used for level 3 programs.

THE STRUCTURE OF A VAX SUPERVISOR DIAGNOSTIC PROGRAM

3.14.4.1 Timing Facilities Available in User Mode and Standalone

Mode - The following is a 1list of macros that may be
used by both 1level 2R and 1level 3 programs to control
time—-dependent functions.

SGETTIM - Gets the current system time.

SSETIMR - Allows you to cause an event to take place after a
specified amount of time has passed.

SBINTIM - Converts an ASCII string that specifies a time into
a numeric value meaningful to the $SETIMR macro.

SCANTIM - Cancels requests specified with the $SETIMR macro.

SHIBER - Causes processing to stop until an expected event
occurs. Referred to as "hibernation."

SWAKE - Cancels a $HIBER request. Referred to as "waking" the
program.

$DS _WAITMS - Delays sequential program execution for a
specified number of milliseconds.

$DS_CANWAIT - Cancels time remaining from a $DS _WAITUS or
$DS_WAITMS call

A typical use of these macros in standalone mode would be ‘to issue
a S$SETIMR macro that will <cause an AST routine (see Section
3.14.3) to be executed when the specified time has expired. Then
a device's interrupts could be enabled. Some other processing
could take place while waiting for the interrupt. When the
interrupt occurs, the interrupt service routine could issue a
SCANTIM macro to cancel the $SETIMR. If the interrupt does not
occur before the time period -ends, the AST routine would be
entered. This routine could declare a timeout error. Program
steps for this function would be as follows.

Main Program: Interrupt Service AST Routine:
Rou<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>